Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КЭП на основе железа

Обычно сталью, а тем более чугуном, называют, сплавы железа с углеродом (более 2% С —чугун,, менее 2% С —сталь). Однако в свете современной техники известны и в последнее время получили распространение сплавы на основе железа (с ними мы познакомимся ниже), в которых углерода очень мало и он является даже вредным элементом тем не менее такие сплавы также называются сталями. Во избежание терминологической путаницы принято считать сплавы, в которых железа более 50 /о, сталями (чугунами) и не именовать их сплавами, а именовать сплавы, содержащие железа менее 50%. Научно это не строго, но технически четко.  [c.159]


Углеродистая сталь промышленного производства — сложный по химическому составу сплав. Кроме основы — железа (содержание которого может колебаться в пределах 97,0— 99,5%), в ней имеется много элементов, наличие которых обусловлено технологическими особенностями производства (марганец, кремний), либо невозможность полного удаления их из металла (сера, фосфор, кислород, азот, водород), а также случайными примесями (хром, никель, медь и др.).  [c.180]

Хотя достигнутая в лабораторных опытах прочность стали (ав = 300 кгс/ /мм ), все же достигнутый уровень прочности составляет лишь часть от теоретической. Возможности создания высокопрочных материалов (точнее, материал + технологический процесс упрочнения) еще достаточно широки. По некоторым прогнозам, в будущем промышленность будет располагать спл,тва-мн а основе железа с Оо,2 = 280 гс/мм и Об = 320 кгс/мм=.  [c.397]

Из тугоплавких материалов тантал является наиболее кислотостойким. Ниобий по кислотостойкости превосходит сплавы на основах железа и никеля, однако уступает танталу.  [c.534]

Естественно, что наиболее подходящим магнитномягким материалом являются чистые металлы, в первую очередь чистое (технически чистое) железо. В отдельных ограниченных случаях применяют сплавы не только на основе железа, но и других металлов — никеля и кобальта.  [c.547]

Изделия из алюминия и его сплавов паяют с припоями на алюминиевой основе с кремнием, медью, оловом и другими металлами. Магний и его сплавы паяют припоями на основе магния с добавками алюминия, меди, марганца и цинка. Изделия из коррозионно-стойких сталей и жаропрочных сплавов, работающих при высоких температурах (выше 500 °С), паяют тугоплавкими припоями на основе железа, марганца, никеля, кобальта, титана, циркония, гафния, ниобия и палладия.  [c.240]

Общие принципы легирования сплавов на основе железа  [c.205]

ОБЩИЕ ПРИНЦИПЫ ЛЕГИРОВАНИЯ СПЛАВОВ НА ОСНОВЕ ЖЕЛЕЗА  [c.205]

Жаропрочные сплавы для работы при высоких температурах (до 700—950 °С) создают на основе железа, никеля и кобальта, а для работы при очень высоких температурах (до 1200—1500 С) — на 0 H(iBe молибдена и других тугоплавких меч аллов.  [c.287]

При сварке сталей и сплавов на основе железа от взаимодействия с воздухом расплавленный металл защищают покрытиями, флюсами, а также защитными газами.  [c.40]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Никель и сплавы на его основе под воздействием попеременного окисления и восстановления окисляются по границам зерен. Легирование хромом снижает коррозию. При контакте с серой или в парах серы при повышенной температуре эти сплавы подвергаются межкристаллитной коррозии. Считается, что никель недостаточно стоек в этих условиях при температуре выше 315 °С. Для повышения устойчивости в серусодержащих средах сплавы на основе железа должны содержать больше хрома и меньше никеля.  [c.208]

Быстрая закалка некоторых сплавов на основе железа, кобальта или никеля, которые содержат также одну или несколько  [c.293]

Как показано в разд. 5.6, в гомогенных однофазных сплавах пассивность обычно наступает при соотношении компонентов, характерном для каждого сплава, и зависит также от коррозионной среды. Для сплавов Ni—Сг граница устойчивости составляет 30—40 % Ni для сплавов Сг—Со, Сг—Ni и Сг—Fe—соответственно 8, 14 и 12 % Сг. Нержавеющие стали представляют собой сплавы на основе железа которые содержат не менее 12 % Сг.  [c.294]

Рассмотрим взаимодействие наиболее важных промышленных металлов с кислородом. В сварочной технике наиболее часто встречаются сплавы на основе железа — стали самых разнообразных марок и назначений. Общий объем сварных конструкций из стали исчисляется десятками миллионов тонн.  [c.320]

Значения А и В для сплавов на основе железа, титана и алюминия приве-  [c.301]

Подавляющее большинство конструкционных материалов представляет из себя сплавы на основе железа - стали и чугуны. Реже применяются цветные металлы. Еще реже - дерево и другие материалы - резины, пластики, пластмассы. В последнее время все чаше применяют композитные материалы.  [c.99]

Механические и коррозионные свойства. Особенности атомной структуры металлических стекол, приводящие к отсутствию в них таких дефектов, как дислокации, границы зерен и т. д., обусловливают очень высокую прочность и износостойкость. Так, например, предел прочности аморфных сплавов на основе железа существенно больше, чем у наиболее прочных сталей. При испытании аморфных металлических сплавов на растяжение обнаруживается их удлинение, т. е. эти сплавы в отличие от оксидных стекол, являются пластичными.  [c.373]

Влияние углерода на свойства сплавов па основе железа  [c.72]

При проектировании литниковых систем для производства жаропрочных отливок на основе железа необходимо учесть следующие требования литниково-питающая система должна заполнять форму металлом за определенное время и обеспечивать минимальное количество неметаллических и газовых включений в металле она должна обеспечить рациональный режим затвердевания и охлаждения отливки, занимать небольшое место в опоке и форме и обеспечивать технологическое удобство при формовке.  [c.147]

Электродуговые печи применяют для плавки всех жаропрочных сплавов на основе железа, никеля, титана, хрома, а также легированных тугоплавкими металлами. Нагревание металлической шихты с помощью электрического тока позволяет легче осуществить быстрый подъем температуры в ванне, точнее регулировать скорость нагрева расплавленного металла, создать жидкоподвижный шлак над зеркалом жидкого металла и самое главное позволяет вести металлургические процессы в различной атмосфере при любом давлении как в вакууме, так и при давлении выше атмосферного.  [c.242]

Плавка жаропрочных сплавов на основе железа К таким жаропрочным сплавам относятся низко- и высоколегированные чугуны, а также среднелегированные высококачественные ст ши.  [c.256]

Плавка жаропрочных сплавов па основе железа в электропечах  [c.260]

В результате термической обработки отливок на основе железа достигают  [c.363]

Установлено, что для образования неограниченных твердых растворов необходимо, чтобы радиусы атомов сплавляемых металлов отличались не больше чем на 15% один от другого. В сплавах на основе железа, хрома, никеля образование неограниченных твердых растворов происходит только тогда, когда атомные радиусы растворяемых элементов отличаются от атомного радиуса железа не более чем на 8%. Для жаропрочных сплавов на основе никеля при легировании их тугоплавкими элементами первой группы (Сг, Мо, W), имеющими атомные радиусы соответственно 0,128 0,140 и 0,141 нм отличаются от атомного радиуса (0,125 нм) никеля на 2,4 10,7 и 11,3%.  [c.410]

Ранее уже отмечали, что чем выше температура плавления металла, тем выше и температура его рекристаллизации. Поэтому для изготовления жаропрочных деталей применяют металлы с высокой температурой плавления. Так как даже кратковременная прочность быстро падает при приближении к температуре плавления, то практически максимальная абсолютная рабочая температура не может превосходить значений, равных 0,7—0,8 от абсолютной температуры плавления. В связи с этим жаропрочные алюминиевые сплавы предназначаются для рабочих температур не выше 250°С (для алюминия Т п — = 657°С), сплавы на основе железа — не выше 700°С (для железа 7 пл = 1530°С), а сплавы на основе молибдена (для молибдена 7 пл = 2бОО°С) —не выше 1200—1400°С.  [c.455]

Преимущественное при мененне титз Н получил в авиации, ра-кетостроен ии и других отра слях техники, пде удельная прочность имеет важное значение. Для интервала температур 300— 600°С сплавы титана имеют самое высокое значение удельной прочности (ав/у), уступая при температурах ниже 300°С алюминиевым сплавам, а выше 600°С — сплавам на основе железа и никеля.  [c.508]


Технически чистые металлы характеризуются низкими прочностными свойствами, поэтому в машиностроении применяют главным образом их сплавы. Сплавы на основе железа называют черными, к ним относят стали и чугуны на основе алюминия, магния, титана и бериллия, имеющие малую плотность — легкими цветными на основе меди, свипца, олова и др. — тяжелыми цветными на основе цинка, кадмия, олова, свинца, висмута и других металлов — легкоплавкими цветными на основе молибдена, ниобия, циркония, воль4)рама, ванадия и других металлов — тугоплавкими цветными.  [c.5]

В дшшой роботе рассмотрены упругие и пластические эффекта, сопровождающие основной структурный переход при стобилизирующей обработке с упорядочением — сдвиговой (бездиффузионной) направленной кристаллизацией аморфных магнитно-мягких металлических сплавов типа переходный металл — металлоид преимущественно на основе железа и никеля, подученных методом спиннингования.  [c.70]

Подробно рассмотрены гехнологии литья жаропрочных отливок из сплавов на основе железа, никеля и титана. Предложены эффективные методы повышения качества и жаропрочности отливок П Д.  [c.4]

Хорошо известные жаропрочные и жаростойкие сплавы, применяемые при изготовлении двигателей внутреннего сгорания, литейной оснастки (пресс-форм), кузнечных штампов, турбовинтовых и газотурбинных двигателей, работающих при средних (300 - 500°С) и высокотемпературных режимах (700 - 1000°С), подразделяют на четыре группы жапропрочные сплавы па основе железа (элементы четвертого периода никеля, кобальта) и жаропрочные сплавы на основе тугоплавких металлов (элементы пятого и шестого периодов).  [c.32]

Основными компонентами в жаропрочных сплавах являются никель и кобальт. Однако сплавы на основе железа вс.яедствие дешевизны широко применяются во многих отраслях при работе изделий при 500 - 900°С.  [c.32]

Алюминий вводят в жаропрочные и жаростойкие сплавы на основе железа и никеля. Его присутствие в не льших количествах в конструкционных и инструментальных сталях положительно влияет на прочностные и эксплуатационные свойства деталей.  [c.68]

Необходимость исследований литейных свойств возникает при разработке новой и совершенствовании существующей технологии литья жаропрочных сплавов. Для исследования литейных свойств (жидкотекучести, усадки, трещинообразования) жаропрочного сплава на основе железа применяется комплексная технологическая проба Нехен-дзи-Куппова, которая показала на рис. 47.  [c.101]

Жаропрочные отливки на основе железа. К таким жаропрочным отливкам относятся отливки из чугуна (гильзы цилиндра, седла клапана и др.) и высоколегированных сталей (формообразую-щисся части пресс-форм и др.).  [c.363]


Библиография для КЭП на основе железа : [c.227]   
Смотреть страницы где упоминается термин КЭП на основе железа : [c.161]    [c.266]    [c.343]    [c.478]    [c.555]    [c.227]    [c.203]    [c.45]    [c.72]    [c.119]    [c.249]    [c.51]    [c.54]    [c.276]   
Смотреть главы в:

Композиционные покрытия и материалы  -> КЭП на основе железа



ПОИСК



Аморфные сплавы на основе железа

Бодакин Н. Е., Баум Б. А. О концентрационных областях.изменения структуры жидких сплавов на основе железа

Влияние давления на структуру и свойства сплавов на основе железа

Высоколегированные аустенитные стали и сплавы на основе железа

Высоколегированные сплавы на основе железа

Жаростойкие Сплавы на основе железа и никел

Жаростойкие сплавы на основе железа

Измельчение зерна, диспергирование фаз и гомогенизация в сплавах на основе железа

Конструкционные на основе железа

Конструкционные порошковые материалы на основе железа

Коррозионная характеристика металлов и сплавов. Неметаллические материалы и защитные покрытия КОРРОЗИОННАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ И СПЛАВОВ Конструкционные материалы на основе железа

Коррозия железа и сплавов на железной основе

Легирование сталей, как способ повышения коррозионной стойкоЖаростойкие сплавы на основе железа

Легированные стали и сплавы на основе железа с особыми свойствами

Литье на основе железа

Материалы фрикционные на основе железа

Металлокерамические материалы на основе железа Саклинский)

Металлы и сплавы Железо и сплавы на его основе

Обзор основных принципиальных схем производства изделий конструкционного назначения из композиций на основе железа

Плавка жаропрочных сплавов на основе железа

Порошковые материалы и изделия на основе железа

Прочие аустенитные сплавы на основе железа

Свойства и методы получения псевдосплавов на основе железа

Свойства на основе железа (железные) — Диаграмма состояния сплавов системы железо—марганец 84 — Применение 82, 83 — Свойства 82, 83 — Химический состав

Сплавы жаропрочные на железо-никелевой основе 254, 255 — Назначение 254 — Пределы длительной прочности и ползучести

Сплавы на железо-никелевой основе

Сплавы на основе железа

Сплавы на основе железа однофазные

Сплавы на основе железа упрочняемые выделениям

Сплавы на основе железо—никель—алюминий

Способы получения порошковых материалов на основе железа и их свойства

Средне- и высокоплавкие припои на основе алюминия, серебра, меди, золота, палладия, никеля, марганца и железа

Стали и сплавы на основе железа

Стефенс Дж. Р., Витцке У. Р. Свойства нового пластичного и прочного сплава на основе железа при низких температурах

Твердые растворы на основе железа

Твердые растворы на основе железа наплавочные

Тройные сплавы на основе железа

Фазовые равновесия в системах на основе железа

Электроды основе железа 219 — Химический состав

Электролиты железнения для осаждения сплавов на основе железа — Особенности электролитов 1.195, 196 Составы электролитов и режимы осаждения

Электролиты железнения для осаждения сплавов на основе железа — Особенности электролитов 1.195, 196 Составы электролитов и режимы осаждения денил



© 2025 Mash-xxl.info Реклама на сайте