Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности интегрирования уравнений движения

Особенности интегрирования уравнений движения  [c.330]

Важное место при интегрировании уравнений движения в задаче двух тел занимает интеграл Лапласа. Кратко остановимся на этом вопросе и выясним его особенности. Из соотношений (П1.15) и (П1.17) получим  [c.408]

Система уравнений движения тела с малой асимметрией (1.31) наряду с преимуществами обладает и одним весьма существенным недостатком уравнения этой системы имеют особенность в окрестности точки ап = 0. При численном интегрировании уравнений движения в окрестности этой точки требуется дробление шага интегрирования, что увеличивает затраты  [c.36]


Наряду с достижениями теории возмущений и другими математическими результатами, одной из основных побудительных причин возрождения интереса к нелинейной механике было изобретение цифровой ЭВМ. Уже с самого начала использование ЭВМ для интегрирования уравнений движения было соединено с методом сечения Пуанкаре, при котором такое интегрирование iV-мерных уравнений заменяется итерацией соответствующего N—1)-мерного отображения. В результате оказалось возможным наблюдать за движением системы в фазовом пространстве в течение сотен тысяч колебаний. Обнаруженные уже в первых экспериментах удивительно тонкие пространственные структуры движения быстро привлекли внимание как теоретиков, так и экспериментаторов. Отсюда две основные особенности нашего изложения материала мы существенно опираемся на результаты численного моделирования, с одной стороны, и на соответствие между непрерывным движением (iV-мерным потоком) и его дискретным N—1)-мерным отображением Пуанкаре — с другой (см. гл. 3). Центральным моментом нашего описания динамики является численный эксперимент, который считается, как правило, окончательной проверкой теоретического анализа. Примеры численного моделирования приводятся в каждой главе также для иллюстрации и пояснения физической сущности явлений.  [c.15]

Отличительной особенностью метода численного интегрирования возмущенных координат является его универсальность. В то время как аналитические методы небесной механики применимы только в том случае, когда возмущения малы, а параметры орбит ограничены некоторыми пределами, при численном интегрировании уравнений движения вообще не возникает вопроса о характере орбит рассматриваемых тел и о величине возмущений.  [c.297]

При а —> а или а —> а функции со — О, а подынтегральное выражение имеет интегрируемую особенность в точках остановки а = а, а. Реализация искомого решения а(т - Xq, Е), со(х - Xq, Е) с помощью выражения (5.1) требует высокоточного интегрирования функции с особенностями. Более предпочтительным оказывается стандартный подход, связанный с интегрированием уравнения движения, например в форме уравнения Лагранжа с некоторыми начальными данными  [c.161]

Интегрирование уравнений (2-40)—(2-42) не представляет особых трудностей, если коэффициент лобового сопротивления не зависит от числа R0T, т. е. если имеет место автомодельная область обтекания. При других условиях необходимо знание закономерностей типа (2-1"), что позволяет затем графо-аналитически или путем интегрирования получить искомое решение. Подобная задача решена для восходящего прямотока (пневмотранспорт) первым методом в [Л. 143], а вторым в [Л. 48, 50, 292]. В последнем случае окончательные решения особенно громоздки. Особенности прямоточного движения частиц рассмотрены также в [Л. 251, 325] и др.  [c.66]


Следует отметить, что данный способ моделирования продвижения трещины, основанный на формуле (4.76), имеет ряд особенностей. Так, в случае, когда k = l (наиболее экономичный вариант с точки зрения времени расчета) силы сцепления уменьшаются до Е за время Атс = Ат. При этом положение вершины трещины изменяется скачком на величину AL, а СРТ V однозначно связана с шагом интегрирования Ат. Последнее обстоятельство накладывает существенное ограничение на выбор схемы интегрирования конечно-элементных уравнений движения приходится использовать безусловно устойчивые, но менее точные схемы интегрирования [см., например, уравнение  [c.247]

Для решения многих задач динамики, особенно в динамике системы, вместо непосредственного интегрирования дифференциальных уравнений движения оказывается более эффективным пользоваться так называемыми общими теоремами, являющимися следствиями основного закона динамики.  [c.201]

Исследование движения точки. Заметим, что при интегрировании составленного для данной точки дифференциального уравнения движения полезно выражать первую постоянную интегрирования через начальные условия немедленно, т. е. как только это произвольное постоянное появилось при первом интегрировании. Получающееся выражение проекции скорости через время или координату точки и через начальные условия называется законом скорости. Исследование движения точки как раз и состоит в определении при помощи закона скоростей и закона движения (17) различных особенностей изучаемого движения.  [c.461]

Теперь можно видеть, что три координаты R являются циклическими, и следовательно, центр масс этих точек либо будет находиться в покое, либо двигаться равномерно. Что касается уравнений движения, определяющих вектор г, то ни одно из них не будет содержать составляющих вектора R или R. Поэтому процесс интегрирования будет здесь особенно простым, и во всех проводимых ниже рассуждениях можно будет опустить первый член лагранжиана. Оставшаяся часть будет тогда такой, как будто мы имеем дело с неподвижным центром силы и с одной движущейся точкой, радиус-вектор которой относительно этого центра равен г, а масса равна  [c.73]

Дифференциальное уравнение орбиты и интегрируемые степенные потенциалы. Переходя к рассмотрению различных специальных случаев центральной силы, мы несколько изменим постановку нашей задачи. До сих пор мы считали, что решение задачи означает нахождение г и 0 как функций времени при заданных постоянных интегрирования Е, I и др. Однако чаще всего нам приходится иметь дело не с этими функциями, а с уравнением орбиты, т. е. с такой зависимостью г от 6, из которой исключен параметр t. В тех случаях, когда сила является центральной, это исключение выполняется особенно легко,, так как уравнения движения содержат тогда t только в качестве переменной дифференцирования. Действительно, уравнение движения (3.8) дает нам в этом случае соотношение  [c.86]

На практике более интересным часто является установление условий абсолютного минимума исходного функционала или определение класса функций, в котором найденный закон движения сообщает минимум этому функционалу. Этот вопрос особенно важен в тех случаях, когда оптимальный закон движения отыскивается интегрированием уравнения Эйлера. В тех случаях, когда поставленная задача решается прямыми вариационными методами, всегда есть основания полагать, что найденный закон движения сообщает исходному критерию оптимальности абсолютный минимум в классе функций, представляемых в виде  [c.77]

Задача расчета открытых русел при неуста-новившемся движении в них ливневых вод рассматривается в определенных границах между начальным (левым) и конечным (правым) сечениями. Численные методы расчета движения ливневых вод, с учетом их особенностей, связаны с интегрированием уравнений А. Сен-Венана с помощью алгоритмов, разработанных в Институте гидродинамики СО АН СССР.  [c.239]

При рассмотрении газа как вязкой несжимаемой жидкости интегрирование системы уравнений движения и уравнения неразрывности может быть проведено лишь для некоторых частных случаев. В качестве примеров ниже указывается методика интегрирования этой системы уравнений для несжимаемой вязкой жидкости в двух случаях при установившемся пространственном ламинарном течении жидкости по цилиндрическому каналу круглого сечения или по зазору между стержнем и втулкой и при аналогичном течении жидкости по зазору между торцом сопла и заслонкой (см. рис. 23.4, а). В связи с особенностями рассматриваемых течений при выводах первоначально приходится учитывать изменение скорости вдоль каждой данной линии тока и нельзя сразу же приближенно считать, что течение подчиняется уравнению элементарной струи газа, как это иногда делалось ранее для одномерных потоков газа. В первом из рассматриваемых случаев решение доводится до квадратур (формула Пуазейля), во втором случае решение представляется в виде бесконечного ряда. Рассмотрим каждый из этих случаев.  [c.462]


Пространственный аналог течения в слое переменной толщины имеет место только в случае Р=у Поэтому для общего случая закона изменения слоя переменной толщины следует указать критерии решений, уравнений движения, которые отвечают источникам (стокам) и вихрям. Имея в распоряжении указанные особенности, можно построить течения с любыми особыми точками, применяя операции 2-дифференцирования и 2-интегрирования.  [c.185]

Поток Щ должен сохраняться при переходе через поверхности разрыва, расположенные внутри жидкости. Уравнения движения в форме (14) удобно использовать для получения интегралов сохранения при стационарных течениях. Интегрирование (14) по объему т, не содер кащему особенностей и заключенному внутри контрольной поверхности 8 путем использования формулы Гаусса — Остроградского, позволяет получить теорему импульсов  [c.9]

Вначале задача интегрирования трактовалась лишь аналитически найти явные формулы для интегралов и решений уравнений движения. Однако после работ Пуанкаре стало ясно, что свойство интегрируемости тесно связано с особенностями поведения траекторий в целом. При глобальном изучении динамических систем существенную роль играют топологические рассмотрения. Сравнительно недавно обнаружено, что сложная топология кон-  [c.6]

Наша цель при выводе основных теорем динамики заключается в том, чтобы выполнить такие преобразования основных уравнений движения, при которых характеристические свойства некоторых классов движений обнаруживаются проще и нагляднее, чем при непосредственном интегрировании исходных уравнений. Характеристические свойства механических движений особенно наглядно выявляются и раскрываются в так называемых законах сохранения кинетических величин количества движения, кинетического момента и кинетической энергии. Для изучения движения точки переменной массы важно установить некоторые аналогии с движением точки постоянной массы.  [c.76]

Замечание. В динамике твердого тела для поиска интегралов, частных решений и анализа устойчивости обычно используется алгебраическая форма уравнений движения. Она также является предпочтительной при их численном интегрировании, вследствие того, что каноническая форма содержит особенности, связанные с вырождением локальных переменных в отдельных точках, например, углов Эйлера в полюсах сферы Пуассона, см. 2, 3).  [c.31]

Выбор метода исследования. Выбор конечно-разностной схемы интегрирования уравнений (У.64) определялся характером изучаемой задачи. Особенность поставленной задачи связана с возникновением, движением и взаимодействием ударных волн, причем установление процесса колебаний пузырьковой жидкости может проходить в течение длительного времени. Отсюда вытекает ряд требований к конечноразностному алгоритму. Последний должен быть одно- или двухшаговым для обеспечения простоты, скорости и экономичности расчета обеспечивать малую численную диссипацию и дисперсию при больших временах расчета описывать ударную волну как резкий разрыв и не давать при этом осцилляций перед скачком и за ним иметь не менее, чем второй порядок аппроксимации.  [c.144]

Изложенный в предыдущей главе прием решения задач динамики в особенности удобно применяется в тех случаях, когда движение материальной точки задано и требуется определить силу или силы, под действием которых это движение происходит. К этой категории вопросов относились примеры, изложенные в предыдущем параграфе. Не менее важна обратная задача зная силы, действующие на материальную точку, определить ее движение. Общий прием для решения этой задачи состоит в интегрировании дифференциальных уравнений движения материальной точки.  [c.25]

Отсюда следует, что если имеется только одномерное движение системы, то это движение будет полностью определено интегралом живых сил. Но если система имеет более чем одно возможное движение, то необходимо найти еще один интеграл уравнений второго порядка. Как это можно сделать, будет зависеть от особенностей рассматриваемого случая. Интегрирование уравнений часто оказывается весьма трудным делом. Трудности особенно возрастают, если при выполнении выкладок не стремиться к возмол<но более простой форме.  [c.129]

Метод Вагнера использовался также в [205] для расчета клина, составленного из упругих пластин при его входе в воду. Гидродинамическое давление, действующее на клин, представлялось в виде сулемы (17.13) [составляющая р совпадает с (17.14) ]. Для определения составляющей р применяется метод особенностей. Уравнения движения системы в [205] интегрировались по методу Бубнова с использованием приближенных численных схем расчета. Смоченная ширина тела определялась путем интегрирования урав-  [c.120]

Так как масса, покоящаяся в начале оси х, притягивает движущуюся частицу с силой, увеличивающейся с уменьшением х, то и без интегрирования уравнения (21) сразу видно, что каждое решение х = x t) этого уравнения должно стремиться к нулю с приближением t к некоторому конечному U. Таким образом, движение сопровождается всегда столкновением двух тел. Алгебраическое дифференциальное уравнение (21i) обладает при х — О особенностью, и, более того, любое решение этого уравнения имеет при t — to особую точку, если x t) -> О при io. Действительно, из (21г) видно, что х -> оо при л 1 ->-0.  [c.240]

Для консервативных систем один из интегралов уравнений движеиия есть интеграл энергии И = Е. Тогда, если проинтегрировать систему уравнений Гамильтона, то время можно ввести квадратурой. Это важная особенность классической механики и она дальше будет рассмотрена подробнее. Пока отмечу, что при таком пути интегрирования уравнений движеиия произвольная постоянная /q может входить в интегралы движения только как аддитивная составляющая в виде (/ - Iq). Тогда мож Ю ввести функцию 5 = = JF+ //(/-/q), которую называют характеристической функцией.  [c.100]


В настоящей главе мы задаемся целью доказать с помощью численных примеров некоторые положения, касающиеся высотных ракет. Этот метод нами выбран потому, что дифференциальные уравнения движения ракеты в воздухе в большинстве случаев, особенно в области звуковых скоростей, не интегрируются в конечном виде. В связи с этим необходимо обратиться к численному интегрирований).  [c.153]

Рассмотрим примеры на составление и интегрирование дифференциального уравнения прямолинейного движения точки. Эти примеры позволяют выявить некоторые особенности решения таких задач. Ниже приведены примеры, когда сила зависит только от времени, или от скорости, или от координаты.  [c.235]

Методы интегрирования уравнений движения, особенно с переменными коэффициентами и нелинейных, интенсивно развиваются. В настоящее время разработано большое количество разнообразных схем явных и неявных, безусловно устойчивых и нет, характеристических и прямых, с искусственной схемной вязкостью и без нее. Чрезвычайно важные с вычислительной точки зрения вопросы точности и устойчивости всех этих схем решаются на основе изучения спектральных характеристик аппроксимируемых операторов исходной краевой задачи и накладьтают определенные требования на соответствие аппроксимации по пространству (размеры конечных элементов и на временном слое (размер шага At по времени) [49].  [c.114]

В последнее время появились исследования, в которых учитываются малые нелинейные члены, обусловленные влиянием инерции подвеса. Первые работы, в которых достаточно точно учитывалась масса кардано-вых колец, связаны с именем Е. Л, Николаи. Наиболее важной является его статья О движении уравновешенного гироскопа в кардановом подвесе (1939). В рассматриваемой задаче имеются три первых интеграла (интеграл кинетического момента всей гиросистемы относительно внешней оси, интеграл кинетического момента для ротора относительно его оси вращения и интеграл энергии). Интегрирование уравнений движения, взятых в форме первых интегралов, приводит к гиперэллиптическим квадратурам. Поэтому, не проводя интегрирования, Е. Л. Николаи подробно исследует возможные траектории конца оси гироскопа в зависимости от параметров системы и начальных условий. Им впервые указано на возможность ухода оси гироскопа. Далее получены условия регулярной прецессии гироскопа и исследуется случай быстро вращающегося гироскопа. Особенно подробно рассматривается вопрос устойчивости движения в случае совпадения или близкого расположения оси гироскопа с осью вращения внешнего кольца. Показано, что в этих случаях значительно снижается степень устойчивости.  [c.250]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

Полученные здесь результаты позволяют, минуя трудоемкую операцию интегрирования существенно нелинейного уравнения движения, изучить топологическую структуру и особенности всех возможных движений машинного агрегата, составить представление о его эксплуатационных возможностях, осуш ествить динамический синтез машинных агрегатов с заданными свойствами предельных режимов, оценить величины промежутков переходных процессов, но истечении которых рассматриваемые режимы выходят к асимптотически устойчивым предельным режимам движения с любой степенью точности.  [c.8]

Предметом настоящих лекций будет исследование тех преимуществ, которые можно извлечь при интегрировании дифференциальных уравнений движения из особой формы этих уравнений. В Аналитической механике можно найти все, что касается задачи составления и преобразования дифференциальных уравнений, но для их интегрирования сделано очень мало. Упомянутая задача едва поставлена единственно, что можно к этому отнести, есть метод вариации постоянных — метод приближений, который покоится на особенной форме дифферепциальных уравнений, встречающихся в механике.  [c.5]

В книге приводится методологически последовательная постановка геометрически и физически нелинейных задач механики деформируемого твердого тела, в том числе задачи о потере устойчивости и контактных взаимодействиях тел. Уравнения формулируются относительно скоростей или приращений неизвестных величин. Приводятся слабые формы уравнений и вариационные формулировки задач. Рассматривается применение метода конечных элементов к решению квазистатических и динамических задач. Используются следующие модели материалов изотропная линейно-упругм, несжимаемая нелинейно-упругая Муни — Ривлина, упругопластическая, термоупругопластическая с учетом деформаций ползучести. Приводятся процедуры численных решений нелинейных задач, основанные на пошаговом интегрировании уравнений равновесия (движения). Рассматриваются особенности процедур численного решения задач о потере устойчивости и контакте тел.  [c.2]

При скоростях движения газа, сравнимых по величине или не слишком превосходящих скорость распространения в нем малых возмущений (скорость звука), возникают специфические для этих режимов движения явления, теоретический анализ которых, как было показано в предыдущих параграфах, представляет скорее вычислительные, чем принципиальные, трудности. Методы интегрирования уравнений пограничного слоя и программы численного их интегрирования на ЭВЦМ в этих случаях уже разработаны. Более серьезные трудности возникают при рассмотрении движений газа в пограничных слоях при очень больших сверхзвуковых, или, как иногда говорят, гиперзвуковых скоростях. Сопровождающие такого рода движения физико-химические явления очень сложны, и многие из них и до сих пор еще недостаточно изучены. Основное значение имеют явления, сопровождающиеся переходом механической энергии потока в тепловую. Это, прежде всего, разогрев газа при прохождении его через скачки уплотнения и особенно через мощную головную волну , образующуюся на тупоносых телах. Большое значение имеет также и диссипация механической энергии в тепло, происходящая в пограничных слоях.  [c.693]


В главе 4 описана общая схема дискретно-вариационного метода, имеющего наглядный физический смысл и основанного на дискретных энергетических представлениях — задании вида мощности внутренних сил для дискретных элементов, объединенпе которых моделирует деформируемое тело. Обсун<даются вопросы взаимосвязи ДВМ с МКЭ и ВРМ, отличительные особенности метода, его использование в численном моделировании однородных и неоднородных тел, многокомпонентных сред и сред с заданной структурой. Рассматривается обобщение ДВМ, проводится сопоставление его с миогоскоростными моделями гетерогенных сред. Для получения дискретных уравнений движения обобщенных узловых масс или уравнений Ньютона системы материальных точек с внутренними и внешними связями используется принцип виртуальных скоростей в дискретной форме. Решение этих уравнений — интегрирование по времени — осуществляется по явной схеме типа крест. Определяющие уравнения или реологические соотношения могут быть достаточно общего вида. Для удобства алгоритмизации они представляются в форме, разрешенной относительно напряжений п их скоростей. Приведены примеры построения дискретных моделей и алгоритмов численного решения одно-, дву- и трехмерных задач динамического деформирования оболочек на основе ДВМ.  [c.7]

Интегрирование уравнения (1) совместно с соответствующим уравнением движения твердого тела и геометрическим условием для определения радиуса пятна контакта типа (2.2) предлагается проводить численно с помощью квадратурных формул, учитывающих наличие неинтегриру-емых особенностей у функции С (Ь,х) на прямых = ж . Этот алгоритм реализован в работах А. Г. Горшкова и Д. В. Тарлаковского [34], А. Г. Горшкова, А. Л. Медведского и Д. В. Тарлаковского [18-22], где кроме симметричной задачи рассмотрен более сложный вопрос о наклонном ударе цилиндрического тела по упругой полуплоскости при различных условиях контакта. В этом случае вместо уравнения (1) приходится рассматривать систему из двух интегральных уравнений.  [c.379]

Полный расчет пограничного слоя для заданного тела путем решения дифференциальных уравнений требует во многих случаях столь обширной вычи лIiтeльнoй работы, что может быть выполнен только на электронных вычислительных машинах. Это особенно ясно будет видно из примеров которые будут рассмотрены в главе IX (см., в частности, 11). Поэтому в тех случаях, когда точное решение уравнений пограничного слоя невозможно при умеренной затрате времени, возникает необходимость применения приближенных способов, и притом иногда даже таких, которые оставляют желать лучшего в смысле точности. Для получения приближенных способов необходимо отказаться от требования, чтобы дифференциальные уравнения пограничного слоя удовлетворялись для каждой частицы жидкости, и ограничиться, во-первых, выполнением граничных условий и контурных связей на стенке и при переходе к внешнему течению и, во-вторых, выполнением только суммарного соотношения, получаемого из дифференциальных уравнений пограничного слоя как некоторое среднее по толщине слоя. Такое среднее дает уравнение импульсов, получающееся из уравнения движения посредством интегрирования по толщине пограничного слоя. В дальнейшем, излагая приближенные способы решения уравнений пограничного слоя, мы неоднократно будем пользоваться уравнением импульсов, которое часто называется также интегральным соотношением Кармана [ ].  [c.152]

Системы квазиканонических уравнений движения сплошной среды, составленные в предыдущих параграфах, не приспособлены к применению методов интегрирования, разработанных в аналитической механике систем с конечным числом степеней свободы. Главными препятствиями являются те особенности их строения, о которых шла речь выше. Конечно, дополнительные осложнения связаны также с тем, что эти уравнения являются уравнениями в частных производных и решение конкретной задачи требует удовлетворения краевым условиям.  [c.103]

Исследования нелинейной динамики (в том числе и методом сечения Пуанкаре) путем численного интегрирования уравнений Гамильтона очень трудоемки, поскольку шаг интегрирования должен быть много меньше характерного периода движения. В отличие от этого прямое итерирование заданного на том же периоде отображения может быть легко выполнено на сотни тысяч периодов и дает в существенных чертах ту же картину движения, что и уравнения Гамильтона. Такие отображения интенсивно использовались в различных исследованиях нелинейных колебаний. В 3.4 мы рассмотрим этим методом задачу об ускорении Ферми [126]. Здесь же проиллюстрируем некоторые обсуждавшиеся выше особенности на примере квадратичного отображения поворота, исследованного Хеноном [185]  [c.204]

Очевидно, что система диффере1щиальных уравнений (1.50)замкнута. Это означает, что движение центра масс летательного аппарата не зависит от его вращательного движения, а сам ЛА может рассматриваться в качестве материальной точки единичной массы. Замечательная особенность уравнений движения в центральном поле состоит в то.м, что они поддаются интегрированию в общем аналитическом внде. Полная  [c.84]

Рассмотрим случаи с,= onst, которые особенно многочисленны при неправильной форме частиц, так как согласно 2-4 автомодельность по R6t (с/ = onst) наступает тем раньше, чем больше несфе-ричность. При /=1,15- 1,5 последующие решения верны для Rei 200—400. Решения дифференциального уравнения при с/ = onst для нисходящего прямотока получены в [Л. 306], для восходящего прямотока в [Л. 71, 72, 143, 254, 262] и для противотока в [Л. 72]. В общем случае уравнения (2-17), (2-18 ) относятся к одному классу рациональных функций, интегрирование которых возможно по формуле общего типа (Л. 71]. Пользуясь выражением (2-40) и полагая скорость воздуха неизменной, найдем время и конечную скорость движения частиц при противотоке. Разделяя переменные и определяя постоянную интегрирования из начальных условий (т=0, VT = VT.n), получим [Л. 71, 72]  [c.66]


Смотреть страницы где упоминается термин Особенности интегрирования уравнений движения : [c.235]    [c.427]    [c.144]    [c.24]    [c.197]    [c.165]   
Смотреть главы в:

Основы техники ракетного полета  -> Особенности интегрирования уравнений движения



ПОИСК



Интегрирование

Интегрирование уравнений

Интегрирование уравнений движени

Особенности движения ИСЗ

Уравнения движения — Интегрирование



© 2025 Mash-xxl.info Реклама на сайте