Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разогрев газа

Следовательно, с усилением ударной волны уменьшается как относительный разогрев газа A7 /7 i, так и приведенная скорость продуктов сгорания Аз.  [c.222]

Этот же вывод можно получить на основе анализа температурных полей при теплоотдаче. При небольшой скорости движения теплоносителя теплообмен потока со стенкой возможен при условии Тf ф При большой скорости течения газа и Рг = 1 теплообмен возможен при Т) Ф Т , а в общем случае при Т ,. Поэтому при скоростях течения, когда разогрев газа в пограничном слое вследствие его торможения становится уже заметным, в формуле Ньютона для теплоотдачи термодинамическую температуру потока следует заменить на адиабатную температуру стенки. Обобщенная формула Ньютона имеет вид  [c.382]


Рассмотренные выше обобщения формулы Ньютона на случая теплоотдачи в условиях движения газа с большой скоростью позволяют при расчете тепловых потоков непосредственно учесть только две особенности этого процесса разогрев газа в пограничном слое и изменение его полной энтальпии из-за химических реакций. Остальные особенности учитываются при оценке коэффициента теплоотдачи.  [c.383]

С увеличением угла конуса Рк возрастает и угол скачка 0с, что влечет за собой более интенсивный разогрев газа около конуса, повышение на нем давления р и температуры Тк- Следствием разогрева газа является возрастание степени его диссоциации. Этот процесс происходит с поглощением теплоты, что вызывает снижение температуры Т на поверхности конуса по сравнению с той, которая была бы в газе, если в нем не происходило физико-химических превращений. Расчеты показывают также, что давление Рк на поверхности, вычисленное с учетом диссоциации, мало отличается от давления, рассчитанного без ее учета.  [c.489]

Пояснение. Повышению плотности при ударном сжатии препятствует разогрев газа на ударной волне.  [c.191]

Расчеты показали, что внутри теплового пятна осуществляется сильный разогрев газа. Это приводит к значительному уменьшению плотности в следе. Газ, втекая в область тепловыделения, нагревается и расширяется. Появляется поршневой эффект, источник тепла расталкивает газ в стороны и на периферии образуется висячий скачок уплотнения.  [c.415]

Наличие такого скачкообразного изменения параметров газа — в действительности очень резкого их изменения на участке длины, равной по порядку пути свободного пробега молекулы,— показывает, что здесь имеет место внутренний молекулярный процесс, связанный с переходом кинетической энергии упорядоченного течения газа в кинетическую энергию беспорядочного теплового движения молекул. Этим объясняется разогрев газа при прохождении его из невозмущенной области перед фронтом ударной волны в область возмущенного движения за фронтом ударной волны. Повышение средней квадратичной скорости пробега молекул вызывает также возрастание давления и плотности газа при прохождении его сквозь фронт ударной волны.  [c.124]

Дело усложняется еще тем, что разогрев газа происходит в столь тонкой области (толщина скачка уплотнения, согласно изложенному в 109, имеет порядок длины свободного пути пробега молекулы), что на этом малом пути сообщенная молекулам при нагреве кинетическая энергия не успевает распределиться по всем внутренним степеням свободы молекул, и газ не приходит полностью в термодинамически равновесное состояние. В таких случаях говорят, что газ релаксирует, а время, потребное для приобретения газом равновесного состояния, и эквивалентную этому времени длину, пройденную газом, называют соответственно временем и длиной релаксаций.  [c.694]


Дело усложняется еще тем, что разогрев газа происходит в столь тонкой области (толщина скачка уплотнения, согласно изложенному в 129, имеет порядок длины свободного пути пробега молекулы), что на этом малом пути сообщенная молекулам при нагреве кинетическая энергия не успевает распределиться по всем внутренним степеням свободы молекул, и газ не приходит полностью в термодинамически равновесное состояние. В таких случаях говорят, что газ релаксирует, а время, потребное для приобретения газом равновесного состояния, и эквивалентную этому времени длину, пройденную газом, называют соответственно временем и длиной релаксации. Процесс релаксации определяется количеством столкновений молекул, необходимых для приобретения равновесной энергии в движениях молекулы с отдельными степенями свободы. Так, например, известно, что для установления равновесного движения с поступательными степенями свободы достаточно нескольких столкновений молекул, для вращательных это уже десятки столкновений, а для колебательных — много тысяч. Для полного уравновешивания  [c.869]

Расчет вентиляционных систем. Основными факторами, влияющими на изменение давления Арр, в общем случае являются сжатие и разогрев газа заливаемым в форму металлом, газификация материала  [c.90]

Так как разогрев газа в баллонах в зависимости от курса дирижабля, времени суток и пр. может колебаться в разных баллонах в больших пределах, возникает необходимость измерять и передавать в гондолу одновременно температурный перепад между каждым баллоном и внешней средой.  [c.43]

Явления, приводящие к отступлению от закона Ома в сильных электрических полях, можно разделить на две группы. К первой относятся явления, изменяющие время релаксации, а следовательно, подвижность носителей. Это разогрев электронного газа и эффект Ганна. Вторая группа явлений, в которую входят ударная ионизация и эффект Зинера, вызывает изменение концентрации носителей.  [c.256]

Разогрев электронного газа. Подвижность носителей заряда определяется временем релаксации x= klv, которое связано с длиной свободного пробега X и скоростью частицы о. В случае невырожденного электронного газа результирующая скорость движения электрона складывается из скорости дрейфа и скорости теплового движения  [c.256]

Заметим, что разогрев электронного газа наблюдается в полупроводниках и практически не имеет места в металлах. Причиной этого является невозможность создать в металле сильные поля из-за высокой концентрации свободных электронов и эффекта экранирования.  [c.256]

Ферми —Дирака 178 Разогрев электронного газа 256 Рассеяние на примесях 253  [c.383]

При движении жидкости или газа с высокой скоростью в потоке около поверхности из-за сил внутреннего трения наблюдается выделение тепла. Это вносит некоторые особенности в протекание процесса теплообмена. Внутренний разогрев потока представляет собой необратимый процесс рассеивания части механической энер-  [c.266]

При движении жидкости или газа с высокой скоростью в потоке около поверхности из-за сил внутреннего трения наблюдается выделение теплоты. с то вносит некоторые особенности в протекание процесса теплообмена. Внутренний разогрев потока представляет собой необратимый процесс рассеивания части механической энергии движения вследствие вязкого трения и перехода этой энергии в теплоту. Процесс этот называют диссипацией энергии движения.  [c.286]

РАЗОГРЕВ ЭЛЕКТРОННОГО ГАЗА  [c.193]

Так как вследствие рассеяния электронов на дефектах решетки их движение становится беспорядочным, энергия переходит в энергию беспорядочного теплового движения, вызывая повышение температуры электронного газа — его разогрев. Электроны, движущиеся в решетке, все время обмениваются энергией с атомами решетки. Этот обмен происходит путем поглощения и испускания квантов энергии колебаний решетки — фононов. В состоянии теплового. равновесия, когда температуры электронного газа и решетки одинаковы, устанавливается равновесие между процессами испускания  [c.193]


Первый путь — это реализация предложений, возникших в самом начале работ по термоядерному управляемому синтезу. Прежде всего физики решили создать солнечное вещество — плазму на Земле. Ученые подсчитали, что для того, чтобы в таком газе ядра атомов приобрели энергию, достаточную для их слияния при столкновении, плазму следует разогреть до температуры  [c.216]

Другой метод борьбы с газовой коррозией состоит в использовании защитной атмосферы. Газовая среда не должна содержать окислителей в контакте со сталью и восстановителей в контакте с медью. В качестве защитной атмосферы при термообработке и сварке применяют инертные газы азот и аргон. Разогрев стали осуществляют в атмосфере, содержащей азот, водород и окись углерода. Сварка алюминиево-магниевых и титановых деталей должна производиться в атмосфере аргона.  [c.14]

При заполнении стенда кавитационный бак 4 заливается полностью, а компенсатор давления 2 — до некоторого минимального уровня. При закрытой задвижке 3 насос включается в работу и проводится разогрев стенда до нужной температуры. После выхода на заданный режим задвижка 3 открывается и кавитационный бак соединяется по газу с компенсатором давления. Уровень воды в кавитационном баке понижается, и в нем образуется газовая подушка. После этого компенсатор давления задвижками 5 и 8 отсекается от циркуляционной трассы и кавитационного бака, вследствие чего роль компенсатора давления начинает выполнять кавитационный бак. За счет циркуляции воды по байпасной линии через кавитационный бак осуществляется ее дегазация. Затем при поддержании постоянной температуры определяется частная кавитационная характеристика. Снижение давления на всасывании, необходимое для определения частной кавитационной характеристики, можно осуществлять двумя путями  [c.220]

Разогрев газа при прохонодении его через ударную волну в детонационном горении заменяет собой в сущности подогрев его теплопроводностью в нормальном горении.  [c.218]

Обычно детонационная волна возникает как результат местного взрыва в горючей смеси. В области взрыва развиваются весьма высокие давления и от нее устремляется очень сильная ударная волна. При прохождении через холодную горючую смесь эта волна, как указывалось выше, вызывает значительный разогрев газа и может довести его до воспламенения. Именно в этом случае за фронтом ударной волны следует область горения, образующая в совокупности с ударной волной волну детонационную, Так как вблизи центра взрыва скорость распрострашеняя волны и интенсивность ее очень велики, то относительные скорости газа в начале области горения и в конце ее близки между собой и существенно ниже критической скорости  [c.222]

Однако с удалением от центра взрыва волна детонации ослабляется и скорость раонространения ее Xi падает. В связи с этим происходит снижение температуры торможения в начале области горения (г ) и рост приведенной скорости газа (Яг). При этом увеличиваются относительный разогрев газа (ЛТ /Т ) и скорость движения (68) продуктов сгорания (Яз). Очевидно, что, когда детонационная волна ослабится настолько, что Хз подни-  [c.222]

Для устранения последствий радиационного повреждения графита было предложено и осуществлено несколько вариантов периодического отжига графитовых кладок. В реакторе F3EP0, например, нагревание кладки производили посредством подачи горячего воздуха при остановленном реакторе [226, № 303]. Разогрев газа можно производить, изменяя его циркуляцию таким образом, чтобы после выхода из активной зоны часть газа, минуя теплообменник, прокачивалась через каналы в графите, нагревая его до температуры отжига [91]. Другой вариант повышения температуры кладки заключается в уменьшении теплосъема в графите в результате понижения скорости циркуляции газа на малой мощности реактора [226, № 1805]. Отжиг при температуре выше рабочей может продолжаться в течение нескольких суток. Однако, как показала авария в Уиндскейле [168], вследствие которой реактор № 1 был выведен из строя, и большое количество радиоактивных продуктов было выброшено на окружающую территорию, отжиг радиационных дефектов непосредственно в реакторе — операция весьма опасная. Накопленная энергия Вигнера не будет опасна при высокотемпературном облучении графита (>300 С). Поэтому в реакторах с повышенной температурой графита не существует опасности значительного накопления запасенной энергии.  [c.243]

При скоростях движения газа, сравнимых по величине или не слишком превосходящих скорость распространения в нем малых возмущений (скорость звука), возникают специфические для этих режимов движения явления, теоретический анализ которых, как было показано в предыдущих параграфах, представляет скорее вычислительные, чем принципиальные, трудности. Методы интегрирования уравнений пограничного слоя и программы численного их интегрирования на ЭВЦМ в этих случаях уже разработаны. Более серьезные трудности возникают при рассмотрении движений газа в пограничных слоях при очень больших сверхзвуковых, или, как иногда говорят, гиперзвуковых скоростях. Сопровождающие такого рода движения физико-химические явления очень сложны, и многие из них и до сих пор еще недостаточно изучены. Основное значение имеют явления, сопровождающиеся переходом механической энергии потока в тепловую. Это, прежде всего, разогрев газа при прохождении его через скачки уплотнения и особенно через мощную головную волну , образующуюся на тупоносых телах. Большое значение имеет также и диссипация механической энергии в тепло, происходящая в пограничных слоях.  [c.693]

Из описанного только что процесса развития ударной волны сжатия следует, что после того, как ударная волна образовалась (в дальнейшем будет доказано, что это произойдет через конечный промежуток времени), по обе стороны от ее фронта параметры состояния газа и его скорость (абсолютная или по отношению к движущемуся фронту) будут иметь значения, различающиеся между собой на конечные величины. Фронт ударной волны представляет поверхность (в настоящем частном случае — плоскость) разрыва параметров состояния газа, перемещающуюся но газу и вызывающую скачкообразное изменение этих параметров, причем невозмущенный газ перед фронтом ударной волны имеет меньшие давления, плотность и температуру, чем после прохождения фронта. Наличие такого скачкообразного изменения параметров газа — Б действительности очень резкого их изменения на участке, и1иеющем длину порядка пути с,зободного пробега молекулы, — показывает, что здесь имеет место внутренний молекулярный процесс, связанный с переходом кинетической энергии упорядоченного течения газа в кинетическую энергию беспорядочного теплового движения молекул. Этим объясняется разогрев газа при прохождении его из невозмущен-ноп области перед фронтом ударной волны в область возмущенного движения за фронтом ударной волны. Повышение средней квадратичной скорости пробега молекул вызывает также возрастание давления и плотности иевозмущенного газа при прохождении его сквозь фронт ударной волны.  [c.150]


Более серьезные трудности возникают при рассмотрении движений газа в пограничных слоях при очень больших сверхзвуковых, или, как иногда говорят, гшгерзвуковых скоростях. Сопровождающие такого рода движения физико-химические явления очень сложны, и многие из них и до сих пор еще недостаточно изучены. Основное значение имеют явления, сопровождающиеся переходом механической энергии потока в тепловую. Это, прежде всего, разогрев газа при прохождении его через скачки уплотнения и особенно через мощную головную волну , образующуюся на тупоносых телах. Большое значение имеет также и диссипация механической энергии в тепло, происходящая в пограничных слоях.  [c.869]

В трубе адиабатического сжатия возможны два режима работы. Один из них связан с использованием тяжелого поршня. Скорость движения такого поршня оказывается обычно меньше скорости звука в толкаемом газе, и разогрев газа в отсеке 3 происходит без образования ударной волны, т. е. изэнтропически.  [c.37]

При подаче напряжения между расходуемым электродом-катодом 3 и затравкой-знодом 8 возникает дуга. Выделяющаяся теплота расплавляет конец электрода капли 4 жидкого металла, проходя зону дугового разряда, дегазируются, заполняют изложницу и затвердевают, образуя слиток 7. Дуга горит между расходуемым электродом и жидким металлом 5 в верхней части слитка на протяжении всей плавки. Сильное охлаждение слитка и разогрев дугой ванны металла создают условия для направленного затвердевания слитка, вследствие чего неметаллические включения сосредоточиваются в верхней части слитка, а усадочная раковина в слитке мала. Слитки ВДП содержат мало газов, неметаллических включений, отличаются высокой равномерностью химического состава, повышенными механическими свойствами. Из слитков изготовляют ответственные детали турбин, двигателей, авиационных конструкций. Масса слитков достигает 50 т.  [c.47]

В современном представлении детонационная волна, распространяющаяся в горючей газовой среде, является двухслойной. Первый слой представляет собой адиабатическую ударную волну, при прохождении через которую газ сильно разогревается. В химически активном газе разогрев этот, если он достаточно интенсивен, может вызвать воспламенение. В связи с тем что толщцна ударной волны ничтожно мала (порядка длины свободного пробега молекулы), в пределах ее процесс горения, по-видимому, развиться не в состоянии. Поэтому область, в которой протекает горение, образует второй, более протяженный, но практически также весьма тонкий слой, примыкающий непосредственно к ударной волне (рис. 5.18).  [c.218]

Перед началом работы печь необходимо разогреть до темгера-туры 770 10 С, открыть баллон с аммиаком, отрегулировать высоту пламени горения газа и проверить правильность работы прибора, регулирующего температуру, контрольной термопарой.  [c.94]


Смотреть страницы где упоминается термин Разогрев газа : [c.377]    [c.648]    [c.170]    [c.171]    [c.349]    [c.129]    [c.37]    [c.816]    [c.49]    [c.419]    [c.434]    [c.437]    [c.131]   
Смотреть главы в:

Аэродинамика Ч.1  -> Разогрев газа



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте