Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волна головная

Проследим за появлением и развитием ударных волн при постепенном увеличении числа Маха Мь Сверхзвуковая область в газовом потоке появляется впервые при некотором значении Ml < 1 в виде области, прилегающей к поверхности обтекаемого тела. В этой области появляется по крайней мере одна ударная волна — обычно замыкающая сверхзвуковую область. По мере увеличения М, эта область расширяется, а вместе с ней удлиняется и ударная волна, существование которой при Mj = 1 было доказано (для плоского случая) в 120 тем самым была доказана необходимость первого появления ударной волны уже при М < 1. Как только Mj начинает превышать единицу, появляется еще одна ударная волна — головная волна, пересекающая весь бесконечно широкий натекающий поток газа. При Мь в точности равном единице, все течение впереди тела является дозвуковым. Поэтому при М) > 1, но сколь угодно близком к единице, сверхзвуковая часть натекающего потока, а с нею и головная ударная волна находятся сколь угодно далеко впереди тела. По мере дальнейшего увеличения Mj головная волна постепенно приближается к телу.  [c.641]


Возможность динамическая движения 91 Волна головная 137, 142, 693  [c.731]

Волна головная ударная (скачок уплотнения) 12, 32 (1)  [c.324]

Вектор потока тепла 35 Возмущение малое 229 Волна головная отошедшая 300  [c.421]

Головные ( ползучие ) волны (см. раздел 2.5) являются продольными волнами, возбуждаемыми параллельно поверхности. Они распространяются прямолинейно, всегда отщепляясь от поперечных волн под углом 33° (в стали раздел 2,5, рис. 2.17). В отличие от поверхностных волн головные волны не следуют контуру поверхности изделия. Они также не затухают и не отражаются под влиянием шероховатостей поверхности или остатков среды акустического контакта. Однако ввиду непрерывной потери энергии в поперечные волны они распространяются только на расстояние в несколько сантиметров.  [c.360]

Как только начинает превышать единицу, появляется ещё одна ударная волна — головная волна, пересекающая весь бесконечно широкий натекающий поток газа. При М , в точности равном единице, всё течение впереди тела является дозвуковым ( 112). Поэтому при М >1, но сколь угодно близком к единице, сверхзвуковая часть натекающего потока, а с нею и головная ударная волна находятся сколь угодно далеко впереди тела. По мере дальнейшего увеличения головная волна постепенно приближается к телу.  [c.557]

В разделах 3.2-3.5 были рассмотрены вариационные задачи, в рещениях которых характеристика исходного потока, выходящая из начальной точки искомого контура, сохраняется. Следующий раздел будет посвящен течениям с головными ударными волнами.  [c.147]

Течения с головной ударной волной  [c.148]

Пусть заданы равномерный набегающий поток газа с вектором скорости параллельным оси х и две точки а и Ь, которые должны быть соединены искомым контуром аЬ. (Случай неравномерного набегающего потока здесь рассматриваться не будет.) Тот случай, когда уь Уа, был рассмотрен в предыдущих главах. Если же уь > Уа, то контур аЬ вызывает появление в потоке ударной волны, которая называется обычно головной. Будем изучать только случай присоединенной ударной волны, выходящей из точки а. На рис. 3.41 ударная волна изображена линией ас.  [c.148]

С равенством (6.17) связано известное свойство ударных волн увеличение угла наклона ударной волны а приводит к увеличению энтропии газа за ударной волной. Таким образом, функция (р увеличивается вместе с а. Отсюда видно, что вариация i t > О допустима только тогда, когда ) < Из сказанного ранее заключаем, что величина х не может быть уменьшена за счет увеличения а только при условии

решению задачи 6 в осесимметричном случае или в плоском случае без ограничений на подъемную силу профиля соответствуют течения с головной ударной волной, не содержащие иных ударных волн в области аЬс, если интенсивность ударной волны может быть изменена малыми вариациями контура аЬ.  [c.153]


Заметим попутно, что схема течений с ударными волнами, изображенная на рис. 3.17 не противоречит сформулированному утверждению, поскольку в этом случае малые деформации контура аЬ не вызывают появления головной ударной волны.  [c.154]

Задача 7. Найти функции а ф), o (V ). из которых a(V>) принадлежит классу d, а а -ф) принадлежит классу Е, реализующие минимум функционала (6.7) при изопериметрических условиях (6.8), (6.9) дифференциальных связях (6.10), (6.11), условии (6.27), при заданных величинах уа, уь, Фа, С, X, фаничных условиях (6.12), (6.19) и условиях (6.14)-(6.16), если разрыв функций в точке с обусловлен только головной ударной волной. Во всяком случае разрывы функций a ip), должны принадлежать классу.  [c.154]

Отметим, что, например, при числе Маха набегающего потока М = 4 максимальное сопротивление тела вращения может в два раза превышать сопротивление полубесконечного цилиндра с плоским головным срезом в случае осевой симметрии. Для проведения этого сравнения был использован расчет осесимметричного течения с отошедшей ударной волной, приведенный Белоцерковским в [38].  [c.173]

Годографа преобразование 607 Головная ударная волна 638  [c.731]

Впереди тела, движущегося в среде со скоростью, большей скорости звука в ней, находится головной участок ударной волны. У тел, им.еющих заостренную форму, головной участок ударной волны располагается очень близко к острию (рис. 192). Если тело имеет затупленную форму, то ударная волна отрывается от движущегося тела и распространяется впереди него (рис. 193). Перед головным участком ударной волны находится невозмущенная область /, а за фронтом этой волны — возмущенная область 2. Когда ударная волна доходит до какой-либо частицы среды, ее скорость возрастает скачком. Если в трубе слой сжатого газа между ударной волной и поршнем все время возрастает, то в данном случае, когда нет стенок, частицы сжатого газа непрерывно расходятся в стороны, освобождая место для движущегося тела. Поэтому слой газа между фронтом ударной волны и равномерно движущимся телом имеет постоянную толщину. Частицы газа, поступающие в этот слой, непрерывно расходятся пз него в стороны, вызывая возмущения в окружающей среде.  [c.240]

Летательный аппарат движется на высоте Я = 10 км со скоростью V = = 2000 км/ч. Какова его скорость относительно частиц воздуха, по которым прошла прямая ударная волна, возникшая перед головной частью корпуса  [c.100]

Рассмотрите схему расположения скачков уплотнения и слабых волн возмущения, а также характер распределения коэффициента давления около тела вращения с конической головной частью, обтекаемого без угла атаки сверхзвуковым потоком, при условии, что половина угла конуса при его вершине меньше критического.  [c.479]

Рассмотрим схему обтекания тела вращения (рис. 10.37) сверхзвуковым невязким потоком газа. Перед таким телом возникает головной конический (присоединенный) скачок уплотнения, простирающийся до места его пересечения (точка К) с прямолинейной волной слабых возмущений (характеристикой), выходящей из точки А сопряжения конуса с цилиндром. За точкой К вследствие взаимодействия с другими волнами, выходящими из той же точки А (и ее окрестности), скачок начнет искривляться. Линии возмущений, отразившись от скачка уплотнения, достигают цилиндрической части корпуса. Результатом этого является выравнивание давления на поверхности тела до значения р-о в набегающем потоке.  [c.509]

Схема взаимодействия вдуваемого газа с пространственным осесимметричным потоком показана на рис. 6.2.1. Эта схема соответствует картине течения в вертикальной (меридиональной) плоскости симметрии. Струя газа 1 отрывается от острых кромок отверстия, достигает поверхности раздела 9 с основным потоком, разворачивается и обтекает поверхность головной части 2. Внутри струи возникает застойная зона 7 тороидальной формы с возвратным течением, ограниченная разделяющими линиями тока 5. Струя смешивается как с набегающим потоком, так и с газом, циркулирующим в застойной зоне, образуя соответствующие области смещения 10 и 11. В зоне присоединения струи к обтекаемой поверхности (в окрестностях точек пересечения разделяющих линий тока с телом) возникает криволинейный скачок уплотнения 3, который, пересекаясь с головной ударной волной 4 перед поверхностью раздела, образует точки тройной конфигурации 12 0т этих точек начинаются поверхности тангенциального разрыва 14 и результирующего скачка 13. За  [c.395]


По мере увеличения интенсивности инжекции головная ударная волна располагалась все дальше от обтекаемой поверхности. Такое явление наблюдалось уже при малых значениях интенсивности [(дР)вд <0,2]. При этом ударная волна, находясь на большем удалении от тела, имела меньшую кривизну.  [c.412]

Радиус головной ударной волны (рис. 6.5.9) определяется с помощью эмпирической зависимости  [c.416]

Спектры Li III, Be IV,. .. охватываются той же обобщенной формулой Бальмера (1) при Z=3, 4.. .. Их линии сдвинуты в далекую ультрафиолетовую часть спектра. В табл. 6 сравниваются для HI, Hell. Li III, Be IV, BV и С VI длины волн головных  [c.27]

С увеличением атомного веса щелочного металла возрастает главное квантовое число п наиболее глубокого S-терма и возрастает для него величина квантового дефекта Л. Вместе с тем снижается ионизационный потенциал, и весь спектр смещается в сторону больших длин волн. В табл. 27 приведены для щелочных металлов значения главных квантовых чисел п наиболее глубоких S-термов, значения для них квантовых дефектов Д, длины волн головного дублета главной серии ns Sy — лр Pl , и ионизационные потенциалы.  [c.134]

Количественная интерпретация данных МПВ основана на анализе я обработке годографов преломленных волн-головных, рефрагироваН ных и преломленно-рефрагированных. При интерпретации использую  [c.68]

Параллельно с исследованием безударных решений велось изучение задач о построении оптимальных профилей и тел вращения, вызывающих появление головных ударных волн. Черный [23] исследовал малые вариации течений около клина. Это позволило вьщелить те случаи, когда прямолинейная образующая обеспечивает минимальное сопротивление профиля с фиксированными концевыми точками. В работах [24, 17] найден класс решений задачи о наилучшей форме тел вращения с протоком, обтекаемых с головной ударной волной. Гудерлей и Эрмитейдж [25] получили тот же класс решений.  [c.47]

Пусть головная часть тела, поверхность которого может пропускать газ, ограничена прямоугольником 0<х<Х,0 у К, гдеЛГ,К — заданные числа. Выберем контрольный контур следующим образом. Обозначим через ta линию Маха равномерного набегающего потока, приходящую в некоторую точку а. Если схема тела отвечает рис. 3.48, то точкой а является передняя точка заостренного профиля. Из нее могут исходить присоединенные ударные волны. Если тело вызывает отошедшую ударную волну, то в качестве точки а выбирается точка на пересечении ударной волны и линии тока, отделяющей массу газа, которая попадает вег внутренние полости тела. Остальную часть контура, которая может пропускать газ, обозначим через ah. Вместо линии ta может быть взята линия за. Контур sah замыкается осью симметрии и образующей поверхности тела hd. Если окажется, что для получения максимального сопротивления на тело должен воздействовать газ, не прошедший через ударную волну, то результаты решения вариационной задачи позволят сделать дальнейшие выводы об оценке величины сопротивления.  [c.168]

Таким образом, при сверхзвуковом обтекании тела перед ним возникает ударная волна ее называют головной. П ри обтекании тела с тупым передним концом эта волна не соприкасается с самим телом. Спереди от ударной волны поток однороден, а позади нее движение меняется, и поток огибает обтекаемое тело (рис. 127, а). Поверхность ударной волны уходит на бесконечность, причем вдали от тела, где интенсивность волны мала, она пересекает направление набегаюидего потока под углом, близким к углу Маха. Характерной чертой обтекания тела с тупым концом является существование дозвуковой области течения за ударной волной — позади наиболее выдающейся вперед части ее поверхности эта область простирается до обтекаемого тела и, таким образом, ограничена поверхностью разрыва, поверхностью тела и боковой звуковой поверхностью (пунктирные линии на рис. 127, а).  [c.638]

При стационарном сверхзвуковом обтекании тела такой формы скорость газа даже вблизи тела будет везде лишь незначительно отличаться по величине и направлению от скорости натекающего потока, а образующиеся ударные волны будут обладать малой интенсивностью (интенсивность головной волны убывает вместе с уменьшением раствора обтекаемого угла). Вдали от тела движение газа будет представлять собой расходящиеся звуковые волны. Основную часть сопротивления газа можно представлять себе как обусловленную переходом кинетической энергии движущегося тела в энергию излучаемых им звуковых волн. Это сопротивление, специфическое для сверхзвукового движения, называют волновым )-, оно может быть вычислено в общем виде при любой форме сечения тела (Th. Кагтап, N. В. Moore, 1932).  [c.643]

При Ki oo функции этого параметра в (127,5—6) стремятся к постоянным пределам. Это утверждение является следствием существования предельного (при Mi->oo) режима обтекания, свойства которого в существенной области течения не зависят от М (С. В. Валландер, 1947 К- Oswatits h, 1951). Под существенной подразумевается область течения между передней, наиболее интенсивной, частью головной ударной волны и поверхностью обтекаемого тела, не слишком далеко от его передней части (подчеркнем, что именно эта область, с наибольшим давлением, определяет действующие на тело силы). Если описывать течение приведенными скоростью v/u], давлением P/P 0f и плотностью р/р как функциями безразмерных координат, то картина обтекания тела заданной формы в указанной области оказывается в пределе независящей от М]. Дело в том, что, будучи выраженными через эти переменные, оказываются независящими от М] не только гидродинамические уравнения и граничные условия на поверхности обтекаемого тела, но и все условия на поверхности ударной волны. Ограничение области движения существенной частью связано с тем, что пренебрегаемые в последних условиях величины — относительного порядка i/m 51п ф, где ф —угол между Vi и поверхностью  [c.660]


Следует подчеркнуть, что рассмотренная нами картина взаимодействия пограничного слоя с набегающим равномерным потоком ограничивалась случаем тела с заостренной передней, частью. Затупление носовой части тела, а также неравномерность внешнего потока (например, при сильно искривленной головной ударной волне) вносят дополнительные изменения в распределении давления. Эти виды взаимодействия рассмотрены в монографии Хейза и Пробстина.  [c.131]

I—ГОЛОВНОЙ скапок уплотнения 2—падающая волна — характеристика первого семейства 3 — отраженная волна — характеристика второго семейства 4 — криволинейный участок скачка уплотнения  [c.140]

Взаимодействие струи с потоком порождает многочисленные скачки уплотнения в плоскости, перпендикулярной обтекаемой поверхности и проходящей через середину отверстия (рис. 4.9.1,а). Непосредственно перед ним возникает косой скачок А5, идущий от окрестности точки отрыва, а перед верхней частью границы струи — криволинейный скачок DB. Встречаясь в точке В, эти скачки образуют тройную конфигурацию, за которой находится система волн разрежения G. Скачок в виде диска, характерный для недорасширенных круглых струй, искривляется и занимает положение DE. В окрестности точки присоединения возникает хвостовой скачок уплотнения F. Эти скачки образуют сложную пространственную конфигурацию. На рис. 4.9.1,6 видны границы головного 4 и хвостового 6 скачков уплотнения, представляющие собой линии, где потоки, идущие вдоль обтекаемой поверхности, встречаются (линии стекания ). Эти линии являются одновременно границами передней и задней застойных зон. На рис. 4.9.1,6 нанесена также линия, на которой потоки, идущие сверху вниз к обтекаемой поверхности из области повышенного давления за скачком АВ, у стенки сопла растекаются в разные стороны (линия растекания 5). Линии V, 2, 3 являются следами П-образных вихрей.  [c.339]

Переход к многобочковой структуре струи сопровождается ее удлинением. Потери полного давления в струе уменьшаются. Это в свою очередь вызовет больший отход головной ударной волны от обтекаемого тела и снижение давления в застойной зоне. При этом по мере дальнейшего увеличения нерасчетности струя вновь примет однобочковую форму, а длина ее станет меньше. Головная ударная волна вновь приблизится к поверхности, давление рд увеличится, а нерасчетность уменьшится и т. д.Такой процесс возникновения пульсаций происходит со значительной частотой порядка 10 с .  [c.402]


Смотреть страницы где упоминается термин Волна головная : [c.898]    [c.214]    [c.151]    [c.167]    [c.395]    [c.400]    [c.452]    [c.235]   
Механика жидкости и газа (1978) -- [ c.137 , c.142 , c.693 ]

Гидроаэромеханика (2000) -- [ c.354 , c.397 ]

Механика жидкости и газа Издание3 (1970) -- [ c.164 , c.869 ]

Акустика слоистых сред (1989) -- [ c.316 ]

Волны в слоистых средах Изд.2 (1973) -- [ c.181 , c.203 ]

Механика сплошных сред Изд.2 (1954) -- [ c.554 ]



ПОИСК



Волна головная в трубе

Волна головная головная

Волна головная головная

Волна головная за движущимся поршнем

Волна головная отошедшая

Волна головная отошедшая бегущая вперед

Волна головная отошедшая назад

Волна головная отошедшая проходящая (преломленная)

Волна головная отошедшая сжатия

Волна головная отошедшая сильная

Волна головная отсоединенная

Волна головная плоская

Волна головная разрежения

Волна головная слабая

Волна головная сферическая

Волна головная ударная (скачок

Волна головная ударная (скачок уплотнения)

Волна головная центрированная

Головная ударная волна

Динамически критерии для разделения запредельных отраженных волн PS и головных волн

Дополнительные материалы экспериментов по регистрации головных волн в твердом тонком слое в воде

Критерий изменения с расстоянием отношения амплитуд обменной волны и головной продольной волны

Кромка задняя головная ударная волн

Необходимость возникновения головной ударной волны при обтекании профиля сверхзвуковым потоком

Оюшсдшая головная ударная волн

Продольные головные волны

Сравнительная интенсивность отраженных волн различных тиСоотношение амплитуд обменных запредельных отраженных волн PS и головных волн

Течения с головной ударной волной



© 2025 Mash-xxl.info Реклама на сайте