Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диссипация энергии механическая

В руководствах по классической гидромеханике уравнение Бернулли часто выводится на основе одного лишь принципа сохранения энергии но методике, которая будет обсуждена в следующем разделе. В таком подходе имеется логическая ошибка в то время как динамическое уравнение не используется вовсе, уравнение Бернулли получается при помощи двух основополагающих предположений одно из них сформулировано уравнением (1.-9.1), а другое, дополнительное состоит в том, что механическая энергия не превращается необратимо во внутреннюю энергию, что означает отсутствие диссипации энергии.  [c.48]


Процесс энергоразделения неотделим от процесса диссипации части механической энергии в тепло, возникающего из-за совершения работы по преодолению турбулентных напряжений. Вследствие энергетической изолированности течения в предположении незначительности абсолютной величины гидравлических потерь преодоление потоком турбулентного трения однозначно связано со снижением давления в потоке. Это снижение давления, трактуемое как потеря энергии, вызывает снижение эффекта температурного разделения в вихревой трубе по отношению к эффекту, который возникал бы в случае идеального течения без трения. Поэтому термодинамическая эффективность процесса энергоразделения в вихревой трубе может быть оценена внутренним адиабатным КПД  [c.182]

При исследовании физических основ явления трения различают трение внешнее и внутреннее. Внешнее трение — сопротивление относительному перемещению, возникающее между двумя телами в зонах соприкосновения поверхностей по касательным к ним и сопровождаемое диссипацией энергии. Внутреннее трение — процессы, происходящие в твердых, жидких и газообразных телах при их деформации и приводящие к необратимому рассеянию механической энергии.  [c.225]

Базовая параметрическая диаграмма служит основой для построения диаграммы механического состояния материала при статическом и циклическом видах нагружения с установлением экстремальных долговечностей [36]. Однако, это требует определения границ реализации механизмов диссипации энергии при данных значениях напряжения и параметра р.  [c.315]

Именно, если имеется некоторая механическая система, движение которой сопровождается диссипацией энергии, то движение может быть описано посредством обычных уравнений движения, в которых надо только к действующим на систему силам добавить диссипативные силы или силы трения, являющиеся линейными функциями скоростей. Эти силы могут быть представлены в виде производных по скоростям от некоторой квадратичной функции скоростей, называемой диссипативной функцией R. Сила трения /а, соответствующая какой-нибудь из обобщенных координат qa системы, имеет тогда вид  [c.178]

Течение газов при наличии трения не будет изоэнтропным, так как из-за действия сил трения происходит диссипация (рассеяние) механической энергии и превращение части ее в теплоту, в результате чего внутренняя энергия, энтальпия и энтропия движущегося газа возрастают. Этот процесс можно изобразить на /-s-диаграмме (рис. 10.8) в виде линии 1-2. Теплота трения при отсутствии теплообмена с окружающей средой усваивается потоком газа, при этом часть теплоты трения идет на работу расширения и преобразуется в энергию движения газа (пл. 122 ) (рис. 10.9). Остальная часть представ-  [c.138]


Диссипация энергии состоит в том, что часть механической энергии необратимо переходит в теплоту. В соответствии с этим силы трения называются диссипативными. Таким образом, в (3.2) диссипативными являются все члены уравнения, содержащие динамическую вязкость р..  [c.80]

При наличии сил сопротивления происходит рассеивание (диссипация) общей механической энергии.  [c.22]

Согласно второму закону термодинамики, Е — это та часть механической энергии, которая вследствие вязкости необратимо перешла в тепловую форму энергии. Таким образом, с энергетической точки зрения действие вязкости, имеющее характер внутренних сил трения в жидкости, выражается в эффекте рассеяния (диссипации) энергии. Другими словами, Е — это та часть энергии, которая израсходована на преодоление гидравлических сопротивлений.  [c.118]

При движении жидкости или газа с высокой скоростью в потоке около поверхности из-за сил внутреннего трения наблюдается выделение теплоты. с то вносит некоторые особенности в протекание процесса теплообмена. Внутренний разогрев потока представляет собой необратимый процесс рассеивания части механической энергии движения вследствие вязкого трения и перехода этой энергии в теплоту. Процесс этот называют диссипацией энергии движения.  [c.286]

Т. е. полная механическая энергия системы убывает во время движения. Саму систему в этом случае называют диссипативной. Иногда говорят, что происходит рассеивание, или диссипация, энергии. Отсюда и возник термин диссипативные силы .  [c.279]

Управляемая машина представляет собой соединение трех частей источника энергии (двигателя), механической системы и системы управления движением. До недавнего времени можно было при исследовании колебательных явлений, происходящих в машинах, не учитывать динамическое взаимодействие этих частей машины. Динамическая независимость двигателя, механической части и системы управления обусловливалась прежде всего существенным различием их характерных постоянных времени собственные частоты механической системы располагались обычно за частотой среза системы управления, постоянная времени двигателя значительно превышала наибольший период свободных колебаний. В этих условиях только при прохождении через резонанс в процессе разгона и выбега проявлялось в какой-то мере взаимодействие источника энергии с механической системой, связанное с резким увеличением диссипации энергии на резонансных режимах в остальном же анализ и синтез функциональных частей машины могли проводиться независимо.  [c.5]

Система дифференциальных уравнений (1.146) описывает колебание механической системы с N степенями свободы, диссипация энергии которой подчиняется гипотезам вязкого затухания Е. С. Сорокина.  [c.54]

ДИССИПАЦИЯ ЭНЕРГИИ ПРИ НЕЛИНЕЙНЫХ ПРОСТРАНСТВЕННЫХ КОЛЕБАНИЯХ ДИСКРЕТНЫХ МЕХАНИЧЕСКИХ СИСТЕМ  [c.339]

При исследовании колебаний дискретных механических систем диссипация энергии учитывается по гипотезам вязкого внутреннего трения и неупругого сопротивления [44, 54, 80].  [c.339]

Для учета диссипации энергии при колебаниях механических систем широко применяют комплексную гипотезу неупругого сопротивления Е. С. Сорокина [80]. По этой гипотезе диссипативные силы зависят от величины деформации упругих связей механической системы и сдвинуты во времени по сравнению с фазой деформации на 90°, а по амплитудному значению пропорциональны векторам упругих реакций  [c.341]

Диссипация энергии в механических системах учитывается по двум гипотезам Рэлея (8.30) и Кельвина—Фойгта (8.31). В частном случае можно рассматривать консервативные системы.  [c.352]


При колебаниях механических систем кроме восстанавливающих сил неизбежно развиваются силы трения. Они совершают необратимую работу, что приводит к диссипации (рассеянию) механической энергии. К таким силам относятся силы трения в опорах и сочленениях механической системы, силы сопротивления среды (жидкой или газообразной), в которой происходят колебания, силы внутреннего трения в материале элементов системы и, наконец, силы, возникающие при нагружении поглотителей энергии (демпферов).  [c.13]

В настоящей монографии рассмотрены принципы синергетики (гл. 1) и дан обзор исследований фрактальных структур (гл. 2). На основе этого пластическая деформация металлов и сплавов анализируется с позиций механизмов диссипации энергии (гл. 3), при этом деформируемое тело рассматривается как система, находящаяся далеко от термодинамического равновесия (эти представления впервые были введены И.И. Новиковым). Предложена методология определения инвариантных комплексов механических свойств, связанных с диссипативными свойствами материалов в точках бифуркаций (гл. 4).  [c.4]

Под диссипативной системой понимают систему, полная механическая энергия которой при движении убывает, переходя в другие формы, например в тепло. Соответственно диссипация энергии есть переход части энергии упорядоченного процесса в энергию неупорядоченного процесса, а в конечном итоге — в теплоту.  [c.23]

В линейных экспериментах, проводимых на однородных жидкостях, скорость диссипации механической энергии в установке равна мощности, затрачиваемой напряжениями, действующими на ее поверхности. Таким образом, в этих случаях слова работа и диссипация энергии являются синонимами.  [c.500]

Другим перспективным методом расчета деталей является метод, развиваемый Ю. Н. Дроздовым. Он сводится к определению условий отсутствия заедания и повышенного износа. Расчетные зависимости представляют в критериальном виде через комплексы, характеризующие реологические процессы, диссипацию энергии, диффузионные процессы, физико-механические характеристики материалов пар трения. Расчет сочетается с использованием результатов, полученных экспериментально, с данными исследования динамики процесса заедания.  [c.397]

В настоящее время синергетика объединила физику диссипативных систем с биологией, что позволило открыть сз гь 6nojmrH4e Koro упорядочения. Но вернемся к кристаллу. Деформированный кристалл является диссипативной системой и поэтому становиться живым в том смысле, что при подводе к нему энергии он остается целостным (живым), пока способен освобождать себя от всей той энтропии, которую он вынуждерг производить в процессе диссипации энергии. Объединение подходов синергетики с материаловедением должно позволить вскрыть суть физического упорядочения в кристаллах при их деформировании, создать принципиально новые технологии получения конструкционных материалов с заранее заданными свойствами и новую теорию их механических свойств [20].  [c.31]

Вычислим диссипацию энергии в гравитацноано волне. Здесь надо говорить не о диссипации кинетической энергии, а о диссипации механической энергии Емех, включающей в себя наряду с кинетической также и потенциальную энергию в поле тяжести . Ясно, однако, что на обусловленную процессами внутреннего трения в жидкости диссипацию энергии не может влиять факт наличия или отсутствия поля тяжести. Поэтому ех определяется той же формулой (16,3)  [c.134]

Наличие вязкости и теплопроводности приводит к диссипации энергии звуковых волн, в связи с чем звук поглощается, т. е. его интенсивность постепенно уменьшается. Для вычисления дис-сипируемой в единицу времени энергии Ёыек воспользуемся следующими общими соображениями. Механическая энергия представляет собой не что иное, как максимальную работу, которую можно получить при переходе из данного неравновесного состояния в состояние термодинамического равновесия. Как известно из термодинамики, максимальная работа совершается, если переход происходит обратимым образом (т. е. без изменения энтропии), и равна соответственно этому  [c.422]

Можно показать, что величина J2 равна мощности внутренних вязкостных напряжений, которая расходуется на преобразование механической энергии в тепловую. Поэтому функция Фд характеризует процесс диссипации энергии (от латинского dissipate — рассеивать).  [c.115]

Выше отмечалось, что трибосистемы относятся к открытым термодинамическим системам, обменивающимся энергией и веществом с внешней средой. Трение является процессом преобразования внеи1ней механической энергии во внутреннюю в виде колебательных и волновь]х движений частиц трибосистемы, сопровождаемым термическими, термоэлектронными, акустическими, химическими и другими явлениями. Основная часть этой энергии превран ается в тепловую и отдается во внешнюю среду, другая идет на изменение физико-химического состояния поверхностных слоев трущихся материалов. Диссипация энергии соответствует увеличению энтропии (dS > 0). Энергетический баланс трибосистемы описывается уравнением [9]  [c.112]

В системе уравнений (8.42), (8.44) диссипация энергии учтена по гипотезе Рэлея. Аналогичный результат можно получить, если рассеяние энергии учитывать по гипотезе Кельвина—Фойгта. Учтем рассеяние энергии по гипотезе Е. С. Сорокина. Примем предпосылку, которая принимается при построении таких моделей [54] логарифмический декремент колебаний всех тел механической системы постоянный. Тогда [ ] = onst и [Ц/)] = onst, см. выражение (8.33). Линейная модель пространственных коле-  [c.347]


Другой недостаток существующих термодинамических методов состоит в том принятии принципа равноценности эксергетических потерь в результате диссипации как механической, так и тепловой энергии па том основании, что любые потери эксергии выражаются одинаково как АЕ = = ТоА З. Потеря механической энергии из-за трения качественно и количественно приравнивается к потере эксергии тепла. Это допущение вызывает серьезные возражения по двум причинам. Прежде всего совершенно очевидно, что се5есто1им ость потерянной единицы работы не равна се-  [c.44]

Аморфные материалы в иерархической лестнице механизмов диссипации энергии отвечают V уровню неравновесности (см. рис. 145). При подводе механической энергии доминантный механизм ее диссипации на этом уровне связан с активацией сдвиго-неустойчивых фаз, порождающей диффузионные потоки. Это подобно состоянию, которое возникает при достижении предельной деформации, инициирующей неравновесные фазовые переходы кристаллическая фаза паракристаллическая фаза —> квазиаморфная фаза. Однако в кинетическом отношении аморфные металлы — это совершенно новые материалы. В них присутствуют специфические дефекты, не присущие материалам в кристаллическом состоянии. Аморфные металлические сплавы идеально однородны, а их фазовый состав не связан с диаграммой состояния [427].  [c.269]

Далее самоорганизация диссипации подводимой энергии в системе переходит на новый, более высокий иерархический уровень — формирование равноосных частиц (стадия IV) путем формоизменения частиц, образующихся на предыдущей стадии. Энергоемкость этого процесса контролируется предельной плотнотью энергии формоизменения сваренных частиц (достижение максимального уровня энтропии). Бифуркационная неуйстойчивость на этой стадии достигается к моменту исчерпания возможности диссипации энергии путем формоизменения сваренных частиц. Переход к новому механизму диссипации энергии связан со сваркой равноосных частиц без предпочтительной ориентации сварных швов. Поскольку к моменту завершения стадии IV сваренные частицы вновь приобретают избыточную энергию, то последующая сварка равноосных частиц становится стадией перехода в новое устойчивое состояние (стадия V). Она предшествует финальной стадии — механическому легированию — образованию частиц А + В (стадия VI). Переход на эту стадию означает конец самостоятельного существования А и В, так как ни элемент А, ни элемент В не имеют в запасе ни одного альтернативного механизма диссипации энергии, кроме образования химических связей.  [c.320]

Так как внутри полости жидкость или газ находятся в движении, то источником тепла, необходимого для плавления или испарения среды, будет служить не только нагретое тело, но и жидкость, в которой тепло генерируется при вязкой диссипации части механической энергии, сообщаемой телом жидкости (или газу). При некоторых условиях движения тела (болыпая скорость тела относительно твердой среды, малая толщина жидкого или газообразного слоя) количество выде-  [c.169]


Смотреть страницы где упоминается термин Диссипация энергии механическая : [c.339]    [c.322]    [c.206]    [c.319]    [c.319]    [c.237]    [c.56]    [c.236]    [c.277]    [c.7]    [c.27]    [c.329]    [c.210]    [c.305]    [c.187]    [c.109]    [c.441]   
Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.153 , c.154 , c.169 ]



ПОИСК



Диссипация

Диссипация механической энергии в вязкой жидкости

Диссипация механической энергии. Принцип минимума диссипации в медленных движениях. Диффузия вихрей

Диссипация механической энергии. Принцип минимума диссипации в медленных движениях. Диффузия завихренности

Диссипация энергии

Диссипация энергии при нелинейных пространственных колебаниях дискретных механических систем

Дополнительные замечания о диффузии механической энергии через боковую поверхность элементарных струек, составляющих поток реальной жидкости. Функция диссипации механической энергии

Жидкости вязкие, действие силы диссипация механической энергии в них

Кудряшев, В. М. Головин. Влияние диссипации механической энергии на теплообмен при ламинарном движении жидкости в круглой цилиндрической трубе

Работа внутренних сил и диссипация механической энергии в движущейся вязкой среде

Теорема об изменении кинетической энергии сплошной среды. Теоремы Бернулли и Борда — Карно Общее дифференциальное уравнение кинетической энергии. Диссипация механической энергии

Энергия механическая



© 2025 Mash-xxl.info Реклама на сайте