Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Гамильтона интегрирования

Уравнения (132.5) называются каноническими уравнениями механики, или уравнениями Гамильтона. Уравнения Гамильтона представляют собой систему обыкновенных дифференциальных уравнений первого порядка. Интегрирование этих уравнений дает 25 величии с/,, (/2..... qs, Ри Рг,. ..у Ps в функции времени t и 2s  [c.369]

Циклические импульсы в данном случае не требуется определять— они просто равны произвольным постоянным С/. При интегрировании вносится т дополнительных произвольных постоянных N/. Общее число произвольных постоянных в конечном результате будет равно 2п, т. е. в точности равно порядку общей системы уравнений Гамильтона, составленной для всех гамильтоновых переменных. Таким образом, при наличии гп циклических координат порядок системы, которую приходится интегрировать, уменьшается на 2т, поскольку уравнения (36) для нециклических координат отщепляются , и после того, как эти уравнения проинтегрированы, циклические координаты находятся с помощью т независимых квадратур (39).  [c.271]


Канонические преобразования могут быть использованы для того, чтобы упростить систему уравнений Гамильтона, сделать ее более удобной для интегрирования. Далее канонические преобразования будут использованы для того, чтобы получить из уравнений Гамильтона иную форму уравнений движения — уравнение в частных производных Гамильтона — Якоби.  [c.312]

Итак, мы реализовали намеченную в начале этого параграфа программу и определили движение системы, обходя интегрирование канонических уравнений Гамильтона. Правда, при этом нам понадобилось найти полный интеграл уравнения в частных производных.  [c.324]

Установленная связь между траекториями механической системы и уравнением в частных производных позволяет не только находить траекторию по решению уравнения Гамильтона-Якоби, но и, наоборот, свести интегрирование уравнения в частных производных указанного типа к интегрированию системы обыкновенных дифферен-циа,тьных уравнений Гамильтона.  [c.648]

Перейдем к изучению инвариантов систем канонических уравнений Гамильтона, получающихся интегрированием по объему фазового пространства. Сначала докажем теорему Лиувилля об интегральном инварианте произвольной системы дифференциальных уравнений. Пусть движение точки пространства Л переменных х, .., ,Хт задано с помощью следующей системы дифференциальных уравнений  [c.668]

На примере циклических координа.т мы видели (см. 8.4), что успех интегрирования систем дифференциальных уравнений, описывающих движение механических систем, в значительной мере зависит от удачного выбора лагранжевых координат. При переходе от одних лагранжевых координат к другим будут по определенному закону изменяться и обобщенные импульсы, так что в новых фазовых переменных уравнения движения вновь примут вид канонических уравнений Гамильтона. Произвольные преобразования фазовых координат таким свойством, вообще говоря, обладать не будут. Интегральный инвариант Пуанкаре (определение 9.5,1) позволяет, подходя с единых позиций как к преобразованию лагранжевых координат, так и обобщенных импульсов, выделить специальный класс преобразований фазовых переменных, не нарушающих структуру канонических уравнений движения.  [c.680]

Интегрирование в (7.159) проводится по областям фазового пространства, отвечающим значениям переменной у, лежащим в интервалах у, у- -Ау при / = 0 и у, у + Ау — в момент времени t. Очевидно, практическое применение соотношений (7.159) для расчета функции f невозможно, хотя бы в силу необходимости для этого нахождения решений уравнений Гамильтона (7.155) для макроскопической системы. В дальнейших рассуждениях используются лишь наиболее общие свойства функции /, не требующие знания ее явного вида.  [c.183]


Преимущество канонических уравнений. — Канонические уравнения Гамильтона благодаря их особенной форме получили большое применение в механике. Это легко понять, если иметь в виду метод Якоби интегрирования уравнений с частными производными первого порядка. Действительно, канонические уравнения механики, которые могут быть написаны в следующей форме  [c.234]

Запишем конечные уравнения движения, получающиеся после интегрирования уравнений Гамильтона, в следующем виде  [c.142]

Мы показали, что интегрирование системы канонических уравнений сводится к нахождению полного интеграла уравнения Гамильтона — Якоби. Это положение имеет не только теоретический интерес. Оказалось, что многие задачи динамики и в том числе задачи, представляющие интерес для теоретической физики, получают на этом пути свое удобное практическое решение.  [c.162]

Если бы мы были вправе рассматривать величины Sqk и Spk как независимые вариации, то непосредственно получили бы уравнения Гамильтона (41.4), приравняв нулю порознь множители при Sqk и Spk-Это, однако, недопустимо хотя qk и pk и входят в Н как независимые переменные, но при вычислении интеграла действия они связаны между собой временной зависимостью, точно так же, как и в равенстве (41.6), вследствие чего мы и должны были проделать интегрирование по частям. Однако если мы возьмем частную производную по р от выражения (41.1) (при фиксированных ), то убедимся, что выражение во вторых фигурных скобках формулы (41.7) тождественно обращается в нуль отсюда мы вполне строго заключаем, что и выражение в первых фигурных скобках формулы (41.7) должно быть равно нулю.  [c.291]

ТЕОРЕМА ЯКОБИ ОБ ИНТЕГРИРОВАНИИ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ГАМИЛЬТОНА В ЧАСТНЫХ ПРОИЗВОДНЫХ  [c.306]

Резюме. При благоприятных обстоятельствах дифференциальное уравнение Гамильтона — Якоби непосредственно интегрируется в квадратурах. Это происходит в том случае, когда уравнение для энергии распадается на п уравнений, каждое из которых содержит лишь одну пару сопряженных переменных <7/г, pk. При этом функция S может быть записана в виде суммы п функций, каждая из которых зависит лишь от одной из переменных Константы интегрирования появляются в процессе разделения переменных.  [c.279]

И. Интегрирование уравнений Гамильтона — Якоби посредством разделения переменных  [c.338]

Уравнение Гамильтона-Якоби. Теория канонических преобразований приводит нас к методу Якоби интегрирования канонической системы уравнений движения  [c.358]

Случай одной степени свободы. Продолжим начатое в п. п. 177-179 изучение некоторых вопросов, связанных с интегрированием консервативных и обобщенно консервативных систем. Будем изучать системы, движения которых обладают описанным ниже свойством периодичности. Для таких систем Делонэ предложил специальный выбор постоянных импульсов а (г = 1, 2,..., п) в характеристической функции Гамильтона п. 178. Эти новые импульсы представляют собой п независимых функций от набора величин появляющихся при нахождении полного интеграла уравнения Гамильтона-Якоби. Они называются действиями (точные определения см. далее) и ниже чаще всего будут обозначаться /. Канонически сопряженные к ним координаты wi называются угловыми переменными. Переменные действие-угол wi весьма удобны для описания движений, обладающих свойством периодичности. Они находят широкое применение в теории возмущений.  [c.371]

Замечания по теореме Гамильтона — Якоби. Эта изящная теорема, доказанная в 16.2 и 16.4, имеет фундаментальное значение как для теории, так и для приложений. До сих пор, исследуя динамическую систему какого-либо частного вида, мы составляли уравнения движения, после чего задача сводилась к интегрированию этих уравнений. Совершенно иначе обстоит дело в методе Гамильтона — Якоби. Как только найден один полный интеграл уравнения Гамильтона в частных производных, сразу могут быть написаны интегралы уравнений движения. Вопрос заключается лишь в том, насколько просто может быть найден полный интеграл. Однако, как будет показано, для большей части задач классической механики нахождение полного интеграла не вызывает каких-либо затруднений.  [c.290]


Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]

Установить единое правило для строгого решения дифференциального уравнения Гамильтона—Якоби невозможно. Однако во многих случаях можно найти решение благодаря теореме о том, что 5 представляет сумму функций, каждая из которых в отдельности зависит от координаты q (и, кроме того, от постоянных интегрирования а/)  [c.914]

Подробное изложение принципа Даламбера, уравнений Лагранжа, вариационных принципов, вариации произвольных постоянных, оптики Гамильтона, характеристической функции, уравнений Гамильтона — Якоби, разделения переменных, интегральных инвариантов, систематическое интегрирование систем канонических уравнений, канонические преобразования, подстановки или производящие функции, эквивалентные системы.  [c.442]

Теорема Лиувилля. Если система уравнений Гамильтона имеет п первых интегралов в инволюции, то она интегрируется в квадратурах при помощи алгебраических операций, обращения функций, интегрирования и дифференцирования (для доказательства достаточно посмотреть, что делалось выше при эффективном пополнении).  [c.266]

В названном мемуаре Остроградский рассматривает вариационную задачу, в которой подынтегральная функция зависит от произвольного числа неизвестных функций и их производных сколь угодно высокого порядка, и доказывает, что задача может быть сведена к интегрированию канонических уравнений Гамильтона, которые можно рассматривать как такую форму, в которую можно преобразовать любые уравнения, возникающие в вариационной задаче. Это преобразование не требует никаких операций, кроме дифференцирования и алгебраических действий. Заслуга такого обобщения задачи динамики принадлежит М. В. Остроградскому.  [c.216]

Это и есть известный случай Лиувилля интегрирования уравнений Гамильтона. Несколько более сложный интегрируемый случай получается, если возможно разбить функции gi, gz,----, gn на такие две группы  [c.24]

Чаплыгин привел уравнения (89) с помощью приводящего множителя к виду уравнений Гамильтона. В ряде случаев он развил затем для рассматриваемых систем метод интегрирования с помощью введения уравнения в частных производных, аналогичного уравнению Гамильтона.  [c.45]

Так 1м образом, мы показали, что если известеи полный интеграл уравнения Гамильтона — Якоби, то нет необходимости интегрировать систему обыкновенных дифференциальных уравнений (6.1), т. е. задача интегрирования системы (6.1) заменяется задачей нахождения полного интеграла у1)авнения (6.12).  [c.156]

Ита <, показано, что интегрирование канонических уравнений Гамильтоиа можно заменить нахождением полного интеграла уравнения Гам льто а — Якоби. В общем случае обе эти задачи обладают одинаковой трудностью, одна (о ме Отся динамическ1 е задачи, для которых 1 ахожден е П0. 0Г0 интеграла уравнения Гамильтона— Якоби оказывается более простым, чем интегрирование канонических уравнений Гамильтона.  [c.158]

Канонические преобразования сохраняют все общие свойства систем уравнений Гамильтона. Изменяется только вид самой функции Гамильтона. Выще мы видели (теорема 9.4.3), что возможность интегрирования таких систем тесно связана именно со спецификой зависимости функции Гамильтона от фазовых переменных. Если удается найти каноническое преобразование, переводящее функцию Гамильтона к такому виду, что систему, полученную после преобразования, можно проинтегрировать, то тем самым проинтегрируются и исходные канонические уравнения.  [c.687]

Метод Делоне для разделения переменных в периодических системах. Метод разделения переменных, если он применим, приводит к получению полного интеграла уравнения Гамильтона — Якоби, необходимого в теории интегрирования Якоби. Полный интеграл уравнения в частных производных первого порядка может принимать множество различных форм. Предположим, что мы имеем какой-то полный интеграл  [c.279]

Заметим, наконец, что для того, чтобы иметь явные формулы рассмотренного выше канонического преобразования, нет необходимости начинать с уравнений (131), (135), которые предполагают интегрирование уравнения Гамильтона — Якоби удобнее обратиться к интегралам кеплерова движения, которые получаются элементарным путем, и ввести в них, вместо первоначальных эллиптических элементов, аргументы (139).  [c.355]

По-,мое.му, подобные волновые группы можно построить, причем таким же способом, каким Дебай ) и фон Лауз ) решили задачу обычной оптики о нахождении точного аналитического представления для светового конуса или светового пучка. При этом появляется еще крайне интересная связь с не рассмотренной в 1 частью теории Якоби—Гамильтона, а именно с из-вестны.м способом получения интегралов уравнений движения посредством дифференцирования полного интеграла уравнения Гамильтона по постоян-ны.м интегрирования. Как мы сейчас увидим, упомянутый только что метод получения интегралов движения Якоби равносилен в нашем случае следующему положению изображающая механическую систему точка совпадает длительный период с той точкой, где встречается определенный континуум волн в равной фазе.  [c.686]


Предположим, что мы произвели некоторое каноническое преобразование гамильтоновых уравнений некоторой данной задачи. Уравнения сохранили свою форму, но гамильтонова функция Н(д, р) превратилась в функцию Н д, р) новых переменных д ир. Если мы умеем интегрировать новые гамильтоновы уравнения, то решение исходных уравнений будет немедленно найдено и задача тем самым решена. В общем случае новые уравнения могут не иметь никаких преимуществ перед исходными в отношении интегрируемости. Но Якоби показал, что если можно построить такое каноническое преобразование, которое преобразует гамильтонову функцию Н(д, р) в Н(р), которая содержит только переменные р, то полученные уравнения Гамильтона могут быть немедленно проинтегрированы и, следовательно, динамическая задача решена. Таким образом, метод Якоби состоит в замене прямого интегрирования уравнений Гамильтона отысканием соответствующего канонического преобразования. Этот метод Якоби для интегрирования уравнений Гамильтона является примером преобразования одной математической проблемы в другую. Вместо попыток прямо интегрировать уравнения Гамильтона, мы ищем решение совершенно другого рода уравнения. Подобная же картина имеет место для случая связи между конформными преобразованиями и задачей Дирихле.  [c.832]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби развита специальная теория. Эта теория имеет особое значение для небесной механики и для классической теории атома Бора—Зом-мерфельда. Построение этой теории должно было заключать в себе три последовательных этапа. Прежде всего необходимо было найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Гамильтона. Затем надо было установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо было развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.899]

В этом последнем примере все координаты кроме одной циклические. В таком случае уравнение Гамильтона — Якоби может быть всегда решено методом разделения переменных. Для этого достаточно положить все импульсы, соответствующие s — 1 циклическим координатам, равными 1,..., aj i остающаяся часть функции Гамильтона — Якоби может быть тогда получена простым интегрированием.  [c.159]

Интегрирование в (6.215) ведется по qi, но координата / — единственная из всех координат q , которая входит в интеграл правой части (6.215), поскольку уравнение Гамильтона — Якоби допускает разделение переменных. Поэтому Ji будут функциями только а и не будут содержать Pft. Это означает, что преобразование от р и q,, к Ji и wi будет преобразованием Гамильтона —Якоби, приводящим к преобразованному гамильтониану R, который будет функцией только J/. Допустим, что это преобразование Гамильтона — Якоби порождается функцией Гамильтона-Якоби S. Из того, что исходное уравненне Гамильтона—Якоби допускало разделение переменных, и из того, что Ji зависят лишь от а, следует, что S можно записать в виде  [c.169]

Чем больше мы проникаем в природу сил, тем больше мы сводня все к взаимным притяжениям и отталкиваниям и тем важнее становится задача определения движения и взаимно притягивающихся тел. Эта задача принадлежит к категории тех задач, к которым приложима наша теория, т. е. которые приводятся к интегрированию уравнения в частных производных, откуда ясна необходимость изучения этих уравнений. Но в течение 30 лет i занимаются только линейными дифференциальными уравнениями в частных производных, в то время как для нелинейных не сделано ничего. Для трех переменных задачу решил уже Лагранж для большего числа переменных Пфафф представил, хотя п имеющую достоинства, но несовершенную работу. По Пфаффу для решения уравнения в частных производных надо сначала проинтегрировать систему обыкновенных дифференциальных уравнений после интегрирования этой последней составляют новую систему дифференциальных уравнений, которая содержит двумя переменными меньше эту систему снова интегрируют и т. д. и таким образом интегрируют, наконец, уравнение в частных производных. Согласно о этим, Гамильтон, приведя дифференциальное уравнение движения к уравнению в частных производных, свел надачу к более трудной, так как но Пфаффу интегрирование уравнения у. частных производных требует интегрирования ряда систем обыкновенных дифференциальных уравнений, в то время как механическая задача требует интегрирования только одной системы обыкновенных дифференциальных уравнений. Поэтому большее значение имело здесь обратное приведение, при помощи которого уравнение в частных производных сводится к одной системе дифференциальных уравнений. Первая система Пфаффа совпадает как раз с той, которая получается в механике и можно показать, что остальные системы тогда не нужны. Очень часто приведение одной задачи к дру-  [c.7]

Следующим этапом является установление общих законов подобных преобразований. Так была развита теория канонических преобразований и их инвариантов. Отсюда видно, что существует глубокая внутренняя связь между аналитической динамикой и общей теорией групп преобразований. Впоследствии эта связь была открыта Софусом Ли (1842—1899), и вся теория приняла удивительно стройный и красивый вид в механику вошли новые идеи, характерные для математики конца XIX в. Якоби показал, что существует такое каноническое преобразование, которое приводит исходные уравнения к новым, легко интегрируемым уравнениям. Таким образом, задача прямого интегрирования канонических уравнений заменяется другой математической задачей найти вид соответствующего канонического преобразования. Наконец, остается задача интегрирования канонических уравнений. Оказалось, что интегрирование этих уравнений равносильно интегрированию уравнения в частных производных так называемого уравнения Гамильтона — Якоби.  [c.217]

Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]


Весьма интересна работа о методе вариации произвольных постоянных в применении к интегрированию уравнений Гамильтона <<0 вариациях произвольных постоянных в задачах динамики . В этой работе О.строградский выводит с большим изяществом дифференциальные уравнения теории возмущений, выражая через скобки Пуассона производные от постоянных, входяпщх в интегралы невозмзтценйого движения. Интересно отметить, что в статье все время используются линейные формы от вариаций канонических перемен-  [c.21]

В мёмуаре посвященном задаче интегрирования уравнений динамики, Лиув илль указывает ряд случаев, когда с помощью метода разделения переменных можно найти полный интеграл уравнений Гамильтона для главной функции.  [c.22]

В этой исключительно ясно и просто написанной работе дается законченное изложение всех вопросов, связанных с задачами канонических преобразований и с задачей интегрирования уравнений Гамильтона методом отыскания полного интеграла. Обпще положения развиваемой им теории Донкин прилагав к установлению уравнений теории возмущенного движения. В своем изложении предмета Донкин широко пользуется функциональными определителями и скобками Пуассона, устанавливая для них новые соотношения и формулируя получаемые теоремы с помощью этих скобок.  [c.26]


Смотреть страницы где упоминается термин Уравнения Гамильтона интегрирования : [c.649]    [c.663]    [c.312]    [c.157]    [c.304]    [c.389]    [c.363]   
Механика (2001) -- [ c.29 , c.30 , c.31 ]



ПОИСК



Вихревой метод интегрирования уравнений Гамильтона

Гамильтон

Гамильтона уравнения

Зэк гамильтоново

Интегрирование

Интегрирование дифференциального уравнения Гамильтона — Якоби разделением переменных. Теорема Штеккеля

Интегрирование канонических уравнений Гамильтона

Интегрирование уравнений

Интегрирование уравнений Гамильтона — Якоби посредством разделения переменных

Интегрирование уравнения Гамильтона — Якоби

Интегрирование уравнения Гамильтона—Якоби для задачи двух тел

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона

Некоммутативное интегрирование уравнений Гамильтона

Преобразование Биркгофа Приближенное интегрирование гамильтоновой системы уравнений вблизи положения равновесия

Преобразование Бпркгофа. Приближенное интегрирование гамильтоновой системы уравнении вблизи положешш равновесия

Теорема Якоби об интегрировании дифференциального уравнения Гамильтона в частных производных



© 2025 Mash-xxl.info Реклама на сайте