Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения метода конечных элементов теория упругости

Уравнения метода конечных элементов теория упругости  [c.79]

Метод конечных разностей, широко используемый для решения плоских задач теории упругости, становится достаточно громоздким в случае областей со сложным контуром. Бурно развивающийся в настоящее время метод конечного элемента, хотя и может быть распространен на пространственные объекты, не лишен недочетов, так как связан с решением систем алгебраических уравнений высокого порядка. В значительной мере отмеченных недостатков лишен метод расширения заданной системы, однако он не пользуется еще должным вниманием.  [c.149]


Дальнейшее уточнение методики приводит к решению объемной задачи теории упругости. Расчет пространственно-напряженного состояния диска сложной конфигурации с эксцентричными отверстиями неправильной формы требует разбиения области решения на большее число элементов. Хотя принципиальных трудностей при решении пространственной задачи МКЭ не возникает, для реализации ее требуются ЭВМ, обладающие значительным объемом оперативной памяти и быстродействием. Например, решение пространственной задачи для РК ДРОС методом конечных элементов с использованием достаточно простого разбиения на элементы (линейные призмы) и решением системы уравнений методом исключения Гаусса потребует приблизительно 2-10 байт оперативной памяти. Сокращения необходимого объема оперативной памяти можно достигнуть применением метода сопряженных градиентов вместо метода Гаусса, однако в этом случае резко увеличивается время счета (до нескольких десятков часов для ЭВМ серии ЕС).  [c.106]

Величины и распределения номинальных напряжений являются исходными для определения местных напряжений (механических и температурных) в местах конструктивной концентрации напряжений (выточки, галтели, отверстия, витки резьбы и т. д.). Местные напряжения могут быть оценены на основе обширной справочной информации по теоретическим коэффициентам концентрации напряжений, полученной из решения краевых задач теории упругости, а также из экспериментов (в частности, методом фотоупругости). Значительные возможности в определении местных напряжений в зонах концентрации связаны с расширяющимся применением ЭВМ и численных методов решения краевых задач (методы конечных элементов, конечных разностей, граничных интегральных уравнений). В большом числе случаев местные напряжения в зонах концентрации (с учетом температурных и остаточных напряжений) могут превосходить предел текучести, обусловливая повторное упругопластическое деформирование.  [c.10]

Расчет напряжений и смещений в винте выполнен вариационно-разностным методом (ВРМ) в перемещениях на основе разностной схемы, изложенной в работе [9]. Выбор метода расчета был продиктован тем, что при одинаковых параметрах системы разрешающих конечно-разностных уравнений (число уравнений, ширина полосы ленточной матрицы) и одинаковом расположении узловых точек ВРМ может дать лучшую аппроксимацию уравнений теории упругости, чем метод конечных элементов (МКЭ).  [c.129]


Уравнение (2.3.1) является основой для разработки различных вариационных методов, в том числе метода конечных элементов, применительно к решению упруго-пластических задач по теории малых упруго-пластических деформаций. Если расчет ведется по теории течения, то в этом случае следует X ,X ,a J,Sy,u заменить на их  [c.95]

Пособие состоит из четырех частей. Первая часть имеет вводный характер. Здесь (главы 1, 2) дана краткая сводка уравнений теории упругости в матричной записи и изложены вариационные методы, составляющие теоретическую базу метода конечных элементов. В гл. 3 подробно описан матричный метод расчета стержневых систем в перемещениях. Используемые здесь принципы, алгоритмы, терминология во многом характерны и для метода конечных элементов. По этой причине расчет стержневых систем излагается иногда в рамках метода конечных элементов. Но между матричным методом перемещений стержневых систем и методом конечных эле  [c.6]

В монографии изложены результаты исследования напряженного и деформированного состояния контактирующих элементов конструкций методами конечных элементов и граничных интегральных уравнений. В рамках плоских, осесимметричных и пространственных задач теории упругости, пластичности и ползучести изучено влияние различных условий контактного взаимодействия на характер работы соединений. Приведены результаты расчетов напряженно-деформированного состояния деталей технологической оснастки, фланцевых соединений и замковых соединений лопаток турбомашин. Рассмотрена ползучесть составного ротора и других объектов с учетом изменения зоны контакта во времени.  [c.2]

Кузьменко А. Г. Основные уравнения теории упругости и пластичности и метод конечного элемента.— Тула Изд-во Тульского политехи, ин-та, 1980.— 100 с.  [c.223]

Исследование законов квазистатического распространения трещин и определение коэффициентов интенсивности напряжений вдоль траекторий развивающихся трещин является исходным этапом [1, 66] в расчетах на прочность и долговечность пластинчатых элементов конструкций, подверженных воздействию внешних циклических нагрузок. Тем не менее к настоящему времени известно сравнительно небольшое число работ, посвященных определению траектории развития трещины в квазихрупком упругом теле. Среди них следует отметить работы, в которых расчет траекторий осуществляется с привлечением метода конечных элементов [10, 26, 160, 165], вариационных [46, 73] и аналитических 17, 119] подходов. Развитие общих методов решения двухмерных задач теории упругости для произвольных областей с гладкими и кусочно-гладкими криволинейными разрезами, в частности метода сингулярных интегральных уравнений, позволяет эффективно решать с их помощью указанные задачи о построении статических траекторий дифференциальным (поэтапным) способом 95, 102, 103, 125], когда на каждом этапе используется локальный критерий разрушения для определения направления приращения трещины у ее вершин.  [c.41]

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]


Общее решение задач теории упругости сводится к последовательности вычислительных процедур матричной алгебры, которые подходящим образом могут быть запрограммированы для реализации на вычислительной машине. Как и другие численные методы, метод конечных элементов сводится к решению больших систем уравнений с многими неизвестными. Для этого разработаны многочисленные алгоритмы (прямые или итерационные методы вычислений).  [c.138]

Возможна иная формулировка метода конечных элементов, следующая из представления о том, что для любого точного или приближенного метода решения задачи теории упругости должны быть удовлетворены уравнения равновесия и условия совместности. В изложенном выше методе перемещений распределение перемещений предполагается таким, что совместность их обеспечивается, поэтому при приближенном решении уравнения равновесия удовлетворяются неточно.  [c.140]

В теории упругости имеются три системы соотношений (1) дифференциальные уравнения равновесия (2) соотношения, связывающие деформации с перемещениями, и условия совместности (3) уравнения состояния материала. Для любого тела, имеющего конечные размеры, системы (1) и (2) дополняются граничными условиями. В данной главе выводится каждое из этих соотношений, а затем в общих чертах показано, как нз совокупности указанных соотношений получить определяющую систему уравнений. В заключение приводятся некоторые замечания, касающиеся вопроса единственности решения задач упругости и его значимости для метода конечных элементов.  [c.107]

В прямом методе построение соотношений для элемента осуществляется непосредственно с помощью учета приведенных в предыдущей главе трех систем уравнений теории упругости уравнений равновесия, соотношений между перемещениями и деформациями, а также уравнений состояния. Этот метод особенно полезен при выяснении фундаментальных соотношений между конечно-элемент-ной аппроксимацией и реальной конструкцией. Так, этим методом будет проведено теоретическое обоснование построений, проведенных в разд. 2.2 и 2.3. Прямому методу присущи черты, свойственные и другим подходам к построению конечно-элементной модели. Особенно это затрагивает вопросы задания сил, если известны напряжения, и деформаций, если известны перемещения. Этот подход включает основные положения, использованные на ранней стадии развития метода конечных элементов [см. 5.1, 5.2]. Однако область применения прямого метода ограничена его трудно или даже невозможно применять при выводе соотношений для усложненных элементов и в некоторых специальных задачах.  [c.125]

Применение метода Галеркина из разд. 5.5 к вспомогательным уравнениям упругости, а не к комбинации дифференциальных уравнений (равновесия или совместности) приводит к выражениям с одновременным участием двух полей. Ниже эта же формулировка рассматривается с других позиций, а именно строится функционал, в который входят два поля, и доказывается, что уравнения Эйлера для этого функционала представляют собой соответствующие вспомогательные уравнения теории упругости. Так как вспомогательные уравнения можно записать различными путями, существует несколько функционалов, в которые входят два поля. Здесь рассматривается функционал Рейсснера (П ) [6.16], которому в методе конечных элементов уделяется особое внимание.  [c.194]

При решении инженерно-геологических задач аргументами, зависящими от номера узлов, являются показатели деформационных свойств грунтов, действующие в этих узлах силы и перемещения. Записав в конечно-разностном вреде связь между силами и перемещениями для каждого узла, получим систему линейных алгебраических уравнений, решение которой приводит к отысканию перемещений узлов. Точность решения зависит от выбора сетки и способа решения системы. По найденным перемещениям определяют деформации и напряжения в узловых точках. Все зависимости при практическом использовании метода записываются в матричной форме. В большинстве случаев (как и в методе конечных элементов) они базируются на теории упругости, однако возможно применение и других зависимостей.  [c.52]

Метод конечных элементов (МКЭ) применяется для моделирования напряженного состояния склонов сложного геологического строения. Ои позволяет получать приближенные решения уравнений теории упругости, что достигается заменой сплошной среды дискретным аналогом, состоящим из конечного числа отдельных элементов, вплотную прилегающих друг к другу и шарнирно скрепленных в вершинах этих элементов. Форма и размеры объекта подчиняются в модели строгому геометрическому подобию или ограничиваются на некотором расстояний от места приложения нагрузок, где значениями напряжений или перемещений, возникающих от этих нагрузок, можно пренебречь. Форма элементов может быть различной, она зависит от формы рассматриваемой области или ее участков. Для плоской задачи наиболее простые решения получаются при треугольной или прямоугольной форме элементов.  [c.152]

В гл. IV рассматриваются приложения метода конечных элементов к нелинейным задачам теории упругости. Глава начинается с обзорного изложения теории конечных упругих деформаций. Затем выводятся нелинейные жесткостные соотношения для упругих тел и приводятся решения ряда задач, в том числе задач о конечных деформациях несжимаемых тел вращения, растяжении и раздувании упругих мембран, конечной плоской деформации несжимаемых упругих тел. В эту главу включен также обзор различных методов решения больших систем нелинейных уравнений.  [c.7]


Вследствие суш ественно нелинейного характера уравнений теории упругости при конечных деформациях количественные решения почти всех задач, имеюш их практическое значение, получаются лишь численно. Метод конечных элементов благодаря его простоте и обш,ности является наиболее удобным способом формулировки нелинейных задач теории упругости для их численного решения ). В этом параграфе будут получены общие уравнения движения и равновесия для типичных конечных элементов упругих тел.  [c.253]

В данной главе дается вывод уравнений метода конечных элементов, основанный на минимизации некоторой интегральной величины. Мы начнем с рассмотрения небольшого примера, который иллюст]рирует вывод уравнений для узловых значений искомой величины в задачах теории поля. Затем на том же примере мы покажем, что процесс минимизации может быть завершен до вычисления интегралов по элементам. После рассмотрения примера дается общий вывод уравнений метода конечных элементов для трехмфных задач теории поля. Глава завершается общим выводом уравнений метода конечных элементов для задач теории упругости. Окончательные результаты как для задач теории поля, так  [c.66]

Вариационная формулировка задачи теории упругости используется главным образом в двух с.пучаях. В первом на основе уравнения бЭ = О строятся численные методы решения этой задачи (метод Ритца, метод конечных элементов и т. п.). Все эти методы относят к классу прямых методов решения задач теории упругости, не требующих в явной форме использования дифференциальных уравнений.  [c.57]

На базе уравнений задачи в напряжениях, сведенных к уравнению совместности в виде (19.11), развиты мощные аналитические методы решения плоских задач теории упругости с использованием функций комплексного переменного. Однако эти методы выходят за пределы данного круга и здесь не излагаются. Получение аналитических решений в замкнутом виде для более или менее сложных областей и видов нагрузок представляет большие трудности. Для сравнительно простых случаев решение может быть построено путем подбора функций Ф, заведомо удовлетворяющих уравнению совместности (19.11). Последующая р омбинация этих частных решений может дать с заданным уровнем приближения решение поставленной задачи. Такая задача рассмотрена в 19.4. Эффективные методы решения плоских задач теории упругости дают метод конечных разностей и метод конечных элементов, которые рассмотрены в последующих параграфах.  [c.444]

Предлагаемый перевод осуществлен с последнего американского издания 1970 г. Написанное еще в 1951 г. приложение к книге Применение конечно-разностных уравнений в теории упругости представляется теперь несколько неполным. Помимо него, в переводное издание включено приложение, посвященное методу конечных элементов. Оно написано переводчиком книги М. И. Рейтманом.  [c.11]

В учебнике несколько увеличен по сравнению с обычно принятым удельный вес тех разделов теории упругости и пластичности, где рассматриваются прикладные вопросы. Так, например, более подробно излагаются основные уравнения теории пластин (не только жестких, но и гибких) и некоторые задачи изгпба пластин, в том числе и изгиб защемленной по всем кромкам пластины (решение С. П. Тимошенко). Даются краткие сведения о методе конечных элементов. Приведен пример решения задачи об изгибе пластины.  [c.6]

Метод конечных элементов применяется не только при решении двумерных задач прикладной теории упругости (пластины, оболочки и конструкции, составленные из пластинчатых и оболочечных элементов), но и объемных (трехмерных) задач теории упругости. Для лучшей аппроксима-цпи сложной формы копструкцип применяются наряду с прямоугольными конечными элементами также конечные элементы других форм. Этот метод может применяться не только в форме метода перемещений, когда за неизвестные принимаются узловые перемещения и определяются они из уравнений равновесия, но и в форме метода сил, когда за неизвестные принимаются узловые внутренние усилия а определяются они из условия совместности перемещений в узловых точках.  [c.228]

Кинематические ограничения, наложенные на перемещения точек модели, качественно характеризуют степень стеснения при совместном деформировании структурных элементов. Отметим, что наложение этих ограничений не единственно. Если предположить однородность поля перемещений по нормали к граням каждого структурного элемента в любом сечении куба (см. рис. 5.2), то для растяжения-сжатия модели получим завышенные характеристики жесткости. При этом расчет усложнится на порядок вместо 27 уравнений получим 81. Аналогичная модель трехмерноармированного материала была рассмотрена в работе [121]. Расчет констант для нее проводили методами теории упругости с наложением упомянутых выше кинематических условий на гранях каждого элемента. Решение граничной задачи методом конечного элемента  [c.138]

Соотношения типа (8.17) для точек гайки записываются аналогично. Определение функцир влияния производится ио обычно 1 методике решения задач теории упругости. При использовании метода конечных элементов эта задача облегчается (см. с. 116). Записывая условие (8.16) для всех окружностей контакта и учитывая уравнения равновесия (8.13), соотношения (8.17) и краевые условия задачи, найдем неизвестные контактные да1вления.  [c.149]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


До недавнего времени расчеты тонкослойных резинометаллических элементов (ТРМЭ) проводили с использованием трехмерных уравнений теории упругости, применяли вариационные, конечно-разностные методы и метод конечных элементов (МКЭ). Указанные подходы нельзя признать эффективными и достоверными, особенно в определении напряжений и перемещений слоев, ввиду чрезвычайной сложности их численной реализации. К вычислительным трудностям решения больших систем (пакет может иметь несколько десятков слоев) добавляются проблемы, связанные с малой объемной сжимаемостью резины и приводящие к плохо обусловленным системам уравнений.  [c.4]

Вариационные принципы теории упругости позволяют свести проблему определения напряженно-деформированного состояния тела к эадкче отыскания минимума того или иного функционала. На этом основаны различные прикладные методы расчета, в которых удается получить приближенное решение задачи, не прибегая к интегрированию системы дифференциальных уравнений теории упругости. Вариационные принципы составляют теоретический фундамент н метода конечных элементов, позволяя, в частности, обосновать его сходимость к точному решению.  [c.27]

Системы уравнений, которые должны здесь рассматриваться, зачастую нелинейны (уравнения газовой динамики, гидродинамики, теории пластичности). Это требует при менения специальных приемов для расчета различных обобпденных решений (решений с разрывами разного типа), применения специальных разностных схем. Для прочност ных задач, опираюш ихся на уравнения теории упругости, в этом курсе должны быть рассмотрены широко используемые в настоящее время метод конечных элементов и метод граничных элементов. В принципе этот курс может быть разбит на две части гидродинамическую и прочностную.  [c.26]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]

В монографии изложены результаты исследования напряженно-деформированного состояния контактирующих элементов конструкций, полученные с помощью метода конечных элементов и метода граничных интегральных уравнений, известного также под названием метод граничных элементов. Эти перспективные современные численные методы удобны для решения на ЭВМ широкого класса контактных задач механики деформируемого тела и в рамках одной программной реализации позволяют учесть большое число практически важных факторов, таких, как сложная геометрия и произвольный характер внешних воздействий, различные условия контактного взаимодействия. Метод конечных элементов представляется более универсальным, так как позволяег легко учесть физическую и геометрическую нелинейность, объемные силы, зависимость свойств материала от температуры. В методе граничных элементов учет этих факторов настолько увеличивает рудоемкость решения задачи, что сводит на нет основные преимущества метода, такие, как дискретизация только границы области и малый объем входной информации. Поэтому в книге метод граничных элементов использован только для решения контактных задач теории упругости, где наряду с простотой задания исходной информации он может дать и выигрыш машинного времени за счет понижения размерности задачи на единицу, особенно для бесконечных и полубесконечных областей. Метод граничных элементов позволяет построить также более совершенный алгоритм для учета трений в зоне контактных взаимодействий. По-виднмому, еще большего выигрыша следует ожидать в некогорых задачах при совместном использовании обоих методов.  [c.3]

Речь идет также о методе дискретизации, который появился в последнее время наряду с методом конечных элементов и успешно применяется для решения задач теории упругости. Суть метода состоит в том, что основные уравнения теории упругости, которые описывают поведение неизвестных функций внутри и на границе рассматриваемой области, сводятся к интегральному уравнению. Неизвестные граничные значения связаны с известными значениями на контуре области через граничное интегральное уравнение. Впервые этот подход был применен к решению задачи кручения с помощью так называемых прямых методов теории потенциала (см. [46]) °). Развитием этой работы явился метод интегральных уравнений Риццо [47] для плоских задач теории упругости, который позднее был распространен Крузом [48] на пространственные задачи.  [c.141]

Монография известного французского математика, которому принадлежит ряд выдающихся результатов в математической теории упругости. Нашим читателям знаком перевод его Методов конечных элементов для эллиптических задач (М. Мир, 1980) и (в соавторстве с П. Рабье) Уравнений Кармана (.4. Мир, 1983). Новая книга представляет собой введение в современные исследования по нелинейной теории упругости н одновременно может использоваться как учебник по курсу прикладной математики и механики сплошной среды. В ней изложены новейшие результаты и поставлен ряд нерешённых проблем.  [c.4]

Решение задач теории упругости может быть проведено одним из двух методов С помощью первого метода решают дифференциальные уравнения с заданными граничными условиями. Второй метод заключается в минимизации интегральной величины, связанной с работой напряжений и внешней приложенной нагрузки. Для решения задач теории упругости методом конечных элементов используется последний подход. Если задача решается в перемещениях и на границе заданы их значения, то нужно минимизировать потенциальную энергию оистемы. Если задача решается в напряжениях с заданными на границе усилиями, то нужно минимизировать дополнительную работу оистемы. Общепринятая формулИ(ровка метода конечных элементов предполагает отыскание поля пб1ремещбний и тем самым связана с минимизацией по-тенциальной энергии системы при отыскании узловых значений вектора перемещений. После того как перемещения будут определены, можно вычислить компоненты тензоров деформаций и напряжений.  [c.79]

Метод конечных элементов удивительно успешно применя ется в самых различных задачах. Он был создан для решения сложных уравнений теории упругости и строительной механики и оказался гораздо эффективнее метода конечных разностей. Сейчас активно разрабатываются и другие применения метода конечных элементов. Этот метод незаменим, если нужно учиты вать геометрические особенности областей — тогда ЭВМ ис поль зуется не только для решения системы уравнений, но в первую очередь для формулирования и построения дискретных аппроксимаций.  [c.7]

Фуджи дал также полезный анализ устойчивости разностных аппроксимаций (по временной переменной) уравнения (24) в методе конечных элементов. Предположим, например, что члены Q" заменяются центральными разностными отношениями второго порядка (А/)-2(д"+ — Q ). Из теории конечных разностей хорошо известно, что величина At должна быть ограничена, или же вычисляемые приближения будут экспоненциально расти вместе с п. Для одномерного волнового уравнения условия устойчивости процесса вычислений имеют вид At h/ 3 для согласованной матрицы массы М и Ai h — для диагональной матрицы, полученной при приближенном расчете матрицы М. (Тонг [Тб] заметил в последнем случае дополнительную устойчивость.) Фуджи исследовал и другие конечноразностные схемы, а также гиперболические уравнения более общего вида для краевых задач с начальными условиями, в том числе и уравнения упругости.  [c.293]


Смешанный метод для бигармонического уравн ия. Сопоставляя три предыдущих пункта, можно увидеть, что при переходе от трехмерной задачи теории упругости к задаче о пластине интегрирование по толщине привело к более простой математической задаче с двумя независимыми переменными. За пониижние размерности мы расплачиваемся увеличением порядка уравнения, позтому в билинейной форме появляются вторые производные. В итоге практическая реализация метода конечных элементов, как мы увидим дальше, значительно усложняется из-за поиска решения в существенно более узком классе функций, что на-кладьшает ижсткие ограничения на использование различных конечных элементов.  [c.35]

Первое формальное изложение метода конечных элементов, вместе с методом жесткостей для совокупности элементов принадлежит Тэрнеру, Клафу, Мартину и Топпу [1956], которые при исследовании задач о плоском напряженном состоянии использовали для описания свойств треугольного элемента уравнения классической теории упругости. Именно Клаф [1960] первым ввел термин конечные элементы в своей более поздней работе, посвященной плоским задачам теории упругости. В последующие годы  [c.13]

Основные идеи, используемые при выводе линейных форм уравнений в приращениях, описывающих поведение деформируемых тел, принадлежат Коши [1829] и Сен-Венану [1868] в последующем их неоднократно выдвигали заново. Современное полное изложение теории деформаций при приращениях дано Био [1965]. Техника приращений широко применяется в приложениях метода конечных элементов. Впервые она была использована Тэрнером [1959] и Аргирисом [1959] при исследованиях с помощью метода конечных элементов геометрически нелинейных задач теории упругости и упругой устойчивости. Обзор относящихся сюда работ вплоть до 1965 г. сделан Мартином [19666]. Многие из конечноэлементных формулировок в приращениях, полученные До 1968 г., неполны, поскольку они не учитывают надлежащим образом изме-  [c.283]


Смотреть страницы где упоминается термин Уравнения метода конечных элементов теория упругости : [c.13]    [c.228]    [c.392]    [c.129]    [c.128]    [c.38]    [c.108]   
Смотреть главы в:

Применение метода конечных элементов  -> Уравнения метода конечных элементов теория упругости



ПОИСК



Конечные элементы упругих тел

Конечный элемент

Метод конечных элементов

Методы Уравнения упругости

ТЕОРИЯ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Теории Уравнения

Теория Метод сил

Теория упругости

Упругость Теория — см Теория упругости

Уравнение конечное

Уравнение метода сил

Уравнения Уравнения упругости

Уравнения Элементы

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости

Элементы теории упругости



© 2025 Mash-xxl.info Реклама на сайте