Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод конечных элементов уравнений

Для метода конечных элементов уравнения, соответствующие t3.28), полностью аналогичны (3.17) метода упругих решений. Выражение же (3.29) для МКЭ выглядит так  [c.79]

В двумерном случае три одночлена а , ху и у . Предположим, что для каждого из них мы нашли функцию Ф е 8 , минимизирующую и—. [ь Эта функция Ф и будет решением метода конечных элементов уравнения Пуассона, когда точное решение и есть квадратичная функция.  [c.181]

Примеры функциональных математических моделей конструкций. Математические модели на микроуровне (модели деталей) чаще всего строятся на основе дифференциальных уравнений в частных производных. Решение этих уравнений осуществляется методами конечных элементов или конечных разностей. В результате решения уравнений ММ могут быть получены параметры искажения формы деталей под воздействием силовых, тепловых, вибрационных и других внешних нагрузок. Внутренними параметрами на микроуровне будут параметры материала деталей и их формы.  [c.52]


Для оценки температурных полей в геометрически сложных областях в последнее время часто применяется метод конечных элементов /1-5/. Можно отметить два подхода к решению нелинейной задачи теплопроводности. Первый из них заключается в предварительной линеаризации нелинейного уравнения теплопроводности с помощью метода оптимальной линеаризации /57 или метода Ньютона - Рафсона,я к линейному уравнению применяется процедура метода конечных элементов (МКЭ). Второй подход заключается в построении решения с использованием МКЭ дня нелинейной задачи в случае "слабой" нелинейности /зу или использовании итераций дня учета нелинейности /5,4/.  [c.133]

Во многих случаях для решения уравнений по методу конечных элементов удобным оказывается метод прогонки (исключения), обеспечивающий более высокую точность вычислений. Ряд эффективных алгоритмов расчета электромагнитных полей на ЭВМ приведен в [30].  [c.114]

Итак, по методу конечных элементов мы перешли к уравнению  [c.156]

Здесь возникает проблема (новая по сравнению с методом 4.4 1—6) разрешимости полученной системы линейных алгебраических уравнений. Напомним, что ранее разрешимость системы уравнений метода конечных элементов вытекала из обш,их теорем приложения II (Лакса — Мильграма) и того обстоятельства, что Vh V. Обобщение теоремы Лакса— Мильграма на случай уравнений вида (4.255) получено в работе Бабушки [39].  [c.207]

Недостаток этой модификации состоит в том, что в случае нестабильного материала матрицу жесткости в системе уравнений метода конечных элементов при каждом новом значении следует пересчитывать заново определенные затруднения возникают и в случае сингулярных ядер. Если же материал стабилен, то схема (5.160) может дать. значительный выигрыш во времени в сравнении со схемой (5.156).  [c.248]

Приведем теперь дискретизацию уравнения (5.284) по методу конечных элементов. Пусть Я —узлы сетки метода конечных элементов в области Qo (а) — соответствующие базисные функции. Приближенное решение задачи Ил разыскиваем в виде  [c.279]

Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]


Для установления особенностей напряженно-деформированного состояния в зоне локальной текучести (в вершине дефекта) на границе двух пластически неоднородных сред использовали метод конечных элементов (МКЭ). В основу программы МКЭ положены уравнения структурной модели упруго-вязкопластической среды /29/. Сетка конечных элементов состояла из 680 элементов со значительным сгущением узлов в окрестности вершины дефекта (рис. 3.12). В силу симметрии рассматривали половину соединения. Численные расчеты были выполнены для степени механической неоднородности равной 1,0, 1,125, 1.25, 1,5, 2,0, 2,5, 3,0, 3,5, 5,0 и 100 при размерах дефекта 1/В = 0,1. ..0,5. В результате было установлено, что вследствие высокой кон-  [c.93]

Вышеизложенные краткие сведения о существующих методах решения задач теории пластичности свидетельствуют о широких возможностях метода линий скольжения, метода совместного решения системы дифференциальных уравнений равновесия и условия пластичности и метода конечных элементов и дают основание использовать их при анализе напряженного состояния и несущей способности сварных соединений тонкостенных оболочек давления.  [c.100]

Большое внимание уделено численным методам решения линейных и нелинейных задач механики деформирования упругих, упругопластических и вязкоупругих тел, численным методам решения дифференциальных и интегральных уравнений, а также прямым вариационным методам. В учебнике изложены основные положения метода конечных элементов, что обеспечит лучшую подготовленность студентов к изучению курса строительной механики. Даются понятия о методе граничных элементов.  [c.3]

Уравнения совместности и метод конечного элемента  [c.136]

Метод конечных разностей, широко используемый для решения плоских задач теории упругости, становится достаточно громоздким в случае областей со сложным контуром. Бурно развивающийся в настоящее время метод конечного элемента, хотя и может быть распространен на пространственные объекты, не лишен недочетов, так как связан с решением систем алгебраических уравнений высокого порядка. В значительной мере отмеченных недостатков лишен метод расширения заданной системы, однако он не пользуется еще должным вниманием.  [c.149]

Метод конечного элемента связан с рассмотрением систем алгебраических уравнений высокого порядка. Для сопоставления рассмотрим кубическое тело. Число неизвестных при использовании метода конечного элемента определяется числом узлов сетки и при решении задачи в перемещениях равно 3(л-1-1) . При решении задачи методом расширения заданной системы число неизвестных для кубического объема определяется как 18п , т. е. уже при делении каждой грани на одну и более клеток ярко выступает преимущество этого метода. На рис. 81 графически показано число уравнений при решении задач обоими методами, причем сплошная линия относится к методу конечного элемента, а штриховая—к методу расширения заданной системы.  [c.160]

Если метод конечных разностей (см. гл. VII, 15) представляет собой приближенный метод, который аппроксимирует дифференциальные уравнения рассматриваемой задачи разностными уравнениями, то метод конечных элементов связан с приближенной минимизацией функционала той же задачи в вариационной постановке.  [c.328]

Следовательно, метод конечных элементов представляет собой определение минимума потенциальной энергии системы среди возможных перемеш,ений заданной формы внутри конечных элементов. Система уравнений метода конечных элементов (9.474), отражаюш,ая, по существу, тот факт, что варьирование перемещений осуществляется по конечному числу параметров uo , может быть записана в виде  [c.335]

Уравнения (7.38) представляют собой систему линейных алгебраических уравнений относительно искомых функций в узлах [Фь Ф2,..., Фр]. Таким образом, в методе конечных элементов решение краевой задачи для уравнения в частных производных сводится к решению линейной системы алгебраических уравнений.  [c.203]


При сравнительной оценке методов с повышенным порядком аппроксимации и обычного метода конечных элементов следует учитывать, что последние значительно сложнее в программировании и требуют гораздо больше подготовительных операций, предшествующих решению системы уравнений.  [c.564]

Решение задач теплопроводности может быть получено еще одним численным методом — метод ом конечных элементов. Математической основой метода конечных элементов является вариационное исчисление. В отличие от метода конечных разностей, в котором исходные дифференциальные уравнения непосредственно используются для построения разностной схемы, в методе конечных элементов дифференциальное уравнение теплопроводности и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается численно.  [c.246]

Для решения задачи минимизации функционала (5.249) могут быть использованы хорошо разработанные методы математического (нелинейного) программирования. Естественно, что для реализации этих методов на ЭВМ задачу необходимо дискретизировать— привести ее к конечно-мерной эту процедуру можно производить с помощью метода конечных элементов. Приведем для справки результат дискретизации функционала (5.249) и уравнения (5.244) по методу конечных элементов в варианте, описанном в главе 3. Итак, пусть а, — узлы сетки метода конечных элементов, w i (х) — соответствующие векторные базисные функции. Тогда приближенное решение по методу конечных элементов отыскиваегся в виде  [c.275]

Вариационная формулировка задачи теории упругости используется главным образом в двух с.пучаях. В первом на основе уравнения бЭ = О строятся численные методы решения этой задачи (метод Ритца, метод конечных элементов и т. п.). Все эти методы относят к классу прямых методов решения задач теории упругости, не требующих в явной форме использования дифференциальных уравнений.  [c.57]

В заключение этого параграфа отметим, что рассмотренные выше основы метода Ритца имеют в основном принципиальное значение. В то же время технически он реализуется в большинстве случаев в одной из форм так называемого метода конечных элементов (МКЭ), о чем более подробно сказано в гл. 8. Преимущества последнего состоят в том, что окончательные разрешающие уравнения Ритца (3.28) удается составлять минуя операцию явного получения выражения полной энергии системы и его дифференцирования.  [c.61]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Конечные элементы могут быть построены различной формы, для различных видов деформации (плоская задача, изгиб пластин, деформации элемента оболочки, стержня и т. д.). Каждый из элементов характеризуется его матрицей жесткости R. Если они построены, то метод конечных элементов позиоляет по изложенной схеме создавать любые композиции (ансамбли) из различных конечных элементов. Причем определение деформированного состояния такой композиции или ансамбля (приближенно заменяющего реальную конструкцию) сводится к составлению и решению системы линейных алгебраических уравнений типа (8.71). В настоящее время существуют автоматизированные комплексы программ, позволяющие рассчитывать по методу конечных элементов очень сложные конструкции с числом неизвестных перемещений, соствляющим тысячи или даже десятки тысяч единиц. Он успешно также применяется в решении нелинейных задач и задач динамики деформируемых систем.  [c.263]

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

В этой главе рассмотрены некоторые специальные методы, которые используют для решения задач газовой динамики. Эти методы выделены в отдельную главу, поскольку, хотя они и не обладают какой-либо общностью, их успешно применяют для решения задач газовой динамики, приспосабливая к конкретным особенностям течения. Описаны следуюш,ие методы метод прямых (изложены два варианта метод интегральных соотношений Дородницына и метод Теленина), метод крупных частиц, метод решения обратной задачи теории сопла, метод решения релаксационных уравнений, метод конечных элементов и релаксационные методы.  [c.180]


Построение системы линейных уравнений. Следующим этапом метода конечных элементов является получение системы уравнений для нахождения неизвестных функций в узлах. Данному дифференциальному уравнению с граничными условиями ставят в соответствие некоторый функционал, минимум которого достигается в том случае, когда удовлетворяется исходное дифференциальное уравнение. ]"1ными словами, вариационным уравнением Эйлера для данного функционала является исходное уравнение. Например, нахождение решения уравнения Лапласа для потенциала скорости d2ip d2 f дх2 ду2  [c.202]

На базе уравнений задачи в напряжениях, сведенных к уравнению совместности в виде (19.11), развиты мощные аналитические методы решения плоских задач теории упругости с использованием функций комплексного переменного. Однако эти методы выходят за пределы данного круга и здесь не излагаются. Получение аналитических решений в замкнутом виде для более или менее сложных областей и видов нагрузок представляет большие трудности. Для сравнительно простых случаев решение может быть построено путем подбора функций Ф, заведомо удовлетворяющих уравнению совместности (19.11). Последующая р омбинация этих частных решений может дать с заданным уровнем приближения решение поставленной задачи. Такая задача рассмотрена в 19.4. Эффективные методы решения плоских задач теории упругости дают метод конечных разностей и метод конечных элементов, которые рассмотрены в последующих параграфах.  [c.444]

Метод конечных разностей дает возможность свести решение систем дифференциальных уравнений к решению систем алгебраических уравнений. Эту же проблему сведения можно решить, используя метод конечных элементов, который благодаря ряду своих достоинств получил очень широкое распространение в связи с внедрением ЭВМ. В тех случаях, когда сложную конструкцию можно расчленкть на такие элементы, в пределах которых решение может  [c.450]

Предлагаемый перевод осуществлен с последнего американского издания 1970 г. Написанное еще в 1951 г. приложение к книге Применение конечно-разностных уравнений в теории упругости представляется теперь несколько неполным. Помимо него, в переводное издание включено приложение, посвященное методу конечных элементов. Оно написано переводчиком книги М. И. Рейтманом.  [c.11]

Основные соотношения МКЭ. Метод конечных элементов основан на предположении, что тело можно представить в виде набора элементов, соединенных друг с другом только в узлах. Связь узловых усилий с узловыми перемещениями задается с помощью матрицы жесткости элемента. Объединение матриц жесткости отдельных элементов в глобальную матрицу жесткости тела позволяет записать условия равновесия тела. При заданных действующих нагрузках или перемещениях и при известной глобальной матрице жесткостзг решение системы алгебраических уравнений равновесия позволяет найти все узловые усилия, а по ним — напряжения и перемещения в пределах каждого элемента. Тем самым напряженно-деформированное состояние тела становится определенным [59].  [c.83]

В учебнике несколько увеличен по сравнению с обычно принятым удельный вес тех разделов теории упругости и пластичности, где рассматриваются прикладные вопросы. Так, например, более подробно излагаются основные уравнения теории пластин (не только жестких, но и гибких) и некоторые задачи изгпба пластин, в том числе и изгиб защемленной по всем кромкам пластины (решение С. П. Тимошенко). Даются краткие сведения о методе конечных элементов. Приведен пример решения задачи об изгибе пластины.  [c.6]


Смотреть страницы где упоминается термин Метод конечных элементов уравнений : [c.44]    [c.106]    [c.107]    [c.148]    [c.65]    [c.113]    [c.158]    [c.249]    [c.100]    [c.4]    [c.187]    [c.263]    [c.551]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.57 , c.58 ]



ПОИСК



Конечный элемент

Метод конечных элементов

Уравнение конечное

Уравнение метода сил

Уравнения Элементы



© 2025 Mash-xxl.info Реклама на сайте