Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория преобразований в механике

Теория преобразований в механике  [c.20]

Подчеркнутое в (2.6) слагаемое не нуждается в преобразовании в механике жидкости и газа, а также в теории пластичности. Но в термоупругости стоит воспользоваться соотношением (3.5.3). Тогда  [c.115]

Курс начинается с раскрытия понятия аффинного точечно-векторного пространства как формальной аксиоматической основы построений теоретической механики. Строится теория преобразований системы скользящих векторов к простейшему виду. Вводится понятие центра масс и тензора инерции и развивается геометрия масс. Весь этот аппарат, помимо теоретической механики, может быть эффективно применен и в некоторых разделах математики [7, 50]. Чтобы подчеркнуть это, ему придана векторно-алгебраическая форма.  [c.10]


Лекции дают достаточно глубокий фундамент для изучения специальной теории относительности, квантовой механики и других разделов теоретической физики. В них подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования и уравнение Гамильтона — Якоби.  [c.2]

Канонические преобразования классической механики играли всегда важную роль также и в квантовой механике. Это относится и к более старой квантовой теории, принадлежащей Борну, и к современной квантовой механике. Поэтому работы, посвященные той или другой форме квантовой механики, часто содержат подробное изложение нужных разделов классической механики. Одной, из лучших книг такого рода является рекомендуемая книга Борна (1924), написанная им до появления волновой механики. В первой Е лаве этой книги дается сжатое изложение теории канонических преобразований и приводится много интересных физических примеров. Скобки Пуассона в этой книге не рассматриваются, так как в современной физике интерес к ним появился только с возникновением в квантовой механике теории Гейзенберга и Дирака.  [c.299]

Для приближенного исследования движения при малых, но отличных от нуля значениях е в механике разработан специальный аппарат теории возмущений, основанный на применении канонических преобразований. Для простоты ограничимся здесь случаем консервативной или обобщенно консервативной системы с одной степенью свободы (п = 1) Функция Гамильтона (17) имеет вид  [c.392]

Огромная литература, которая существует по вариационным принципам, конечно, не могла быть даже и в малой степени охвачена в одном сборнике. Естественно, что для помещения в сборник отобраны прежде всего основные работы, а также работы, освещающие связанные с вариационными принципами проблемы теории групп, теории преобразований и т. п. Из работ, относящихся к применению вариационных принципов в физике, взяты те, которые имели важное значение в развитии физики и в то же время помогали уяснению физического смысла, значения и границ применимости этих принципов за пределами аналитической механики. Вопросы, связанные с применением вариационных принципов механики для исследований в области механики сплошных сред и многочисленных прикладных задач, должны быть рассмотрены особо. Не включены в сборник также работы, относящиеся к применению вариационных принципов механики в современных исследованиях по теории квантованных полей и т. п., так как эти работы освещены в ряде монографий и сборников основных статей, вышедших в самое последнее время.  [c.5]


Для выяснения места вариационных принципов в физической картине мира и их эвристической ценности необходимо было развитие корпускулярно-полевого синтеза и глубокое проникновение в теоретическую физику идеи фундаментального значения инвариантов групп преобразования. Это развитие исторически осуществлялось в теории относительности, квантовой механике (нерелятивистской и релятивистской) и квантовой теории полей.  [c.857]

Эта теория создана уже около половины века тому назад, но в литературе известны лишь немногие примеры применения ее к задачам механики деформируемых тел. Первые работы принадлежат Р. Куранту [0.9] и Э. Рейсснеру [0.13]. Р. Курант впервые применил преобразование Фридрихса для установления связи между принципами Лагранжа и Кастильяно. Э. Рейсснер [0.13], оценивая результаты своих четырех работ, посвященных вариационным принципам теории упругости, характеризует новизну использования теории [0.9] и полученную в итоге полную формулировку вариационной теоремы как вклад в теорию упругости. В отечественной литературе теория [0.9] впервые применена в работах [0.4], а впоследствии в (0.15, 0.6, 0.1] и др. Однако все эти исследования, как правило, не имеют общего характера и относятся к вариационным формулировкам в терминах стационарности функционалов. К анализу экстремальных свойств функционалов эта теория не применялась.  [c.8]

Фундаментальные характеристические свойства системы дифференциальных уравнений теории оболочек (например, ее тип или порядок) инвариантны относительно невырожденных преобразований координат на отсчетной поверхности Q. Однако аналитическое представление дифференциальных операторов этой теории существенно зависит от используемой координатной системы, и надлежащим выбором последней им можно придать наиболее удобную, каноническую" форму. Такую форму дифференциальные уравнения теории оболочек получают в ортогональной системе координат, связанной с линиями кривизн поверхности Q. В этой системе координат, обычно и используемой в механике тонкостенных систем, ниже формулируются уравнения неклассической теории оболочек. Итак, пусть х , — ортогональная система координат, координатные линии которой — линии кривизны поверхности Q. Пусть —  [c.68]

Современные исследования по неклассической механике оболочек связаны с непосредственным применением соотношений теории упругости, различных вариантов асимптотического способа, построением уравнений теории оболочек на основе уравнений теории упругости в сочетании с их аналитическими преобразованиями.  [c.4]

В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]

Понятие бесконечно малых преобразований (и, в частности, бесконечно малых канонических преобразований), на которых базируется представление о непрерывной группе, несомненно имело корни в геометрии и даже в механике, Так, например, бесконечно малые движения рассматривались уже Пуансо в Новой теории вращения тел (1834 г.)  [c.232]


Все изложенные выше работы Гамильтона и его последователей носят чисто аналитический характер и, в главных чертах, исчерпывают задачу об интегрировании уравнений динамики. С точки зрения совершенно новой, геометрической, пришел к рассмотрению метода Гамильтона норвежский математик С. Ли. В своих многочисленных работах по непрерывным группам преобразований Ли построил на совершенно оригинальных геометрических основаниях теорию интегрирования дифференциальных уравнений. Для задач аналитической механики особое значение имеют работы Ли по основанной им теории преобразований прикосновения  [c.31]

Следующими первоочередными проблемами были построение уравнений для неконсервативных неголономных систем с линейными реономными и неоднородными связями при отсутствии ограничений для выражений энергии в голономной и неголономной системах референции, исследование связей между динамическими уравнениями и принципами неголономной механики, построение теории преобразования и интегрирования этих уравнений. Эти проблемы в значительной степени были решены в XX в.  [c.93]

Вариационные принципы механики всегда вызывали весьма повышенный интерес, причем характер этого интереса менялся. В XVI11 веке механиков и философов волновало то обстоятельство, что телеологический финализм, который, как им казалось, заложен в этих принципах, оказывался в какой-то мере эквивалентным причинному (ньютонову) описанию явлений. В XIX веке интерес сосредоточился на мощном математическом формализме, связанном с этими принципами, и на их внутреннем родстве с проблемой преобразований в механике. В последней четверти XIX и первой половине XX века особое внимание привлекли эвристические возможности этих принципов (особенно в теории относительности и квантовой физике) и их место в физической картине мира.  [c.5]

Работа, опубликованная М.Планком в начале XX в., не сразу встретила признание. Многие видные фиаики гого времени были склонны считать предложенный Планком способ вычисления VV > неким математическим фокусом, не имеющим серьезного физического смысла. Большой заслугой Эйнштейна является своевременная поддержка и развитие этой принципиально новой идеи, обусловившей революционные преобразования в физике. В частности, Эйнштейн сразу же предложил использовать формулу Планка для объяснения зависимости теплоемкости твердых тел от температуры вблизи О К, истолковал опыты по фотоэффекту, введя понятие фотона и заложив основы квантовой оптики (см. 8.5). Об этом стоит упомянуть, так как в популярной литературе иногда встречаются попытки представить Эйнштейна ученым, завершившим классическую физику, но не принявшим квантовых представлений. Это совсем неправильная точка зрения. Эйнштейн, бесспорно, был одним из творцов новой квантовой физики, а его сомнения и поиски смысла вероятностного описания, свойственного дальнейшему развитию квантовой механики, отражают глубину подхода этого гениального ученого ко всем проблемам естествознания. Другое дело, что по многим причинам, из которых не последнюю роль играли многолетние попытки решить непомерно трудную задачу создания единой теории поля, за последние 30 лет своей жизни Эйнштейн не внес существенного вклада в бурное развитие квантовой физики.  [c.426]

Следует отметить, что, систематизируя курс теории упругости по математическим методам, авторы не ставили перед собой цель добиться единообразия в изложении материала различных глав. В тех случаях, когда имеется полноценная теория, она излагалась с небольшим количеством иллюстрирующих примеров (таковы, например, главы, связанные с теорией аналитических функций и потенциалов). В других же случаях, наоборот, в основном приводились решения конкретных задач. Пр ичиной этого (например, в главе Метод разделения переменных ) явилось то обстоятельство, что достаточно полная ясность этого сранительно простого метода достигается раньше (уже в гл. I), а интерес представляют отдельные специфические задачи теории упругости, в которых удается получить важные и конструктивные результаты. В главе VI Интегральные представления и интегральные преобразования создается такая же ситуация,но в силу совершенно других причин. Ввиду отсутствия универсальных методов решения задач такого класса изложение математического аппарата возможно лишь на отдельных примерах. При их подборе авторы руководствовались не только указанными выше общими критериями, но и обращали внимание на новизну и оригинальность математических результатов, степень важности предлагаемых задач для тех или иных, родственных теории упругости наук (в частности, механики разрушения), воз-  [c.8]

Для иллюстрации применения новых математических методов в книге широко применяется теория матриц, в частности, к исследованию вращения твердого тела. При таком изложении известная теорема Эйлера о повороте твердого тела превращается в теорему о собственных значениях ортогональной матрицы. При матричном изложении такие различные темы, как тензор инерции, преобразование Лоренца в пространстве Мин-ковского и собственные частоты малых колебаний оказываются в математическом отношении тождественными. Кроме того, матричные методы позволяют уже в начале курса познакомиться с такими сложными понятиями, как понятия отражения и псевдотензора, которые так важны в современной квантовой механике. Наконец, в связи с изучением параметров Кэйли — Клейна матричные методы позволяют ввести понятие спинора .  [c.8]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]


После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора—Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Галгильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.827]

Касательное преобразование Софуса Ли, имеющее исключительное значение в общей теории преобразования, находит применение в механике как в силу своей связи с теорией возмущений, так и из-за того, что так называемое каноническое преобразование, столь важное в динамике, является частным случаем касательного преобразования.  [c.831]

Как нами выше уже было отмечено, во второй половине XIX в. в первую очередь в работах Софуса Ли выявилась органическая связь механики в форме Гамильтона—Якоби с теорией преобразований.  [c.841]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

В следующем параграфе будет спсте.матически развита теория для задач такого типа, основанная на использовании переменных действие — угол, введенных в предыдущей главе. Могут спросить, в какой степени необходимо — если не касаться непосредственной связи вопроса с кван-товомехапической теорией возмущений — бросать в бой тяжелую артиллерию канонических преобразований в самом деле, многие авторы полагают, что любой прямой метод вполне успешно решает ту же самую задачу. На это можно возразить, обратив внимание на то, что каноническая теория возмущений была в ходу задолго до появления квантовой механики но самым убедительным аргументом является, пожалуй, то, что во лшогих случаях, как можно убедиться, прямые методы оказываются либо более неудобными, либо они ведут просто к ошибочным результатам нередко случается, что они одповре-меппо и неудобны, и ошибочны.  [c.184]

Теория относительности Эйнштейна была создана как электродинамика движущихся тел, в основу к-рои были положены новый принцип относительности (относительность обобщалась с механич. явлений на явления эл.-магн. и оптические) и принцип постоянства и предельности скорости света с в пустоте, не зависящей от состояния движения излучающего тепа. Эйнштейн показал, что операцповальные приёмы, с помощью к-рых устанавливается физ. содержание евклидова пространства в классич. механике, оказались неприменимыми к процессам, протекающим со скоростями, соизмеримыми со скоростью света. Поэтому он начал построенпе электродинамики движущихся тел с определения одновременности, используя световые сигналы для синхронизации часов. В теории относительности понятие одновременности лишено абс. значения и становится необходимым развить соответствующую теорию преобразования координат (х, у, z) и времени (t) при переходе от покоящейся системы отсчёта  [c.158]

Если квантовомеханич. система обладает определённой С., то операторы сохраняющихся физ. величин, соответствующих этой С., коммутируют с гамильтонианом системы. Если нек-рые из этих операторов не коммутируют между собой, уровни энергии системы оказываются вырожденными (см. Вырождение) определённому уровню энергии отвечают неск. различных состояний, преобразующихся друг чере-з друга при преобразованиях С. В матем. отношении эти состояния представляют базис неприводимого представления группы С. системы. Это обусловливает плодотворность применения методов теории групп в квантовой механике.  [c.509]

Опыт показывал, что сформулированный Галилеем принцип относительности, согласно к-рому механич. явления протекают одинаково во всех инерциальных систсмах отсчёта, справедлив и Д-1я эл,-магн. явлений. Поэтому ур-ния Максвелла не должны изменять свою форму (должны быть инвариантными) при переходе от одной инерци-альной системы отсчёта к другой. Однако оказалось, что это справедливо лишь в том случае, если преобразования координат и времени при таком переходе отличны от преобразований Галилея, справедливых в механике Ньютона, Лоренн нашёл ли преооразования (Лоренца преобразования), но не смог дать им правильную интерпретацию, Это было сделано Эйнштейном в его спец, теории относительности.  [c.313]


Следующим этапом является установление общих законов подобных преобразований. Так была развита теория канонических преобразований и их инвариантов. Отсюда видно, что существует глубокая внутренняя связь между аналитической динамикой и общей теорией групп преобразований. Впоследствии эта связь была открыта Софусом Ли (1842—1899), и вся теория приняла удивительно стройный и красивый вид в механику вошли новые идеи, характерные для математики конца XIX в. Якоби показал, что существует такое каноническое преобразование, которое приводит исходные уравнения к новым, легко интегрируемым уравнениям. Таким образом, задача прямого интегрирования канонических уравнений заменяется другой математической задачей найти вид соответствующего канонического преобразования. Наконец, остается задача интегрирования канонических уравнений. Оказалось, что интегрирование этих уравнений равносильно интегрированию уравнения в частных производных так называемого уравнения Гамильтона — Якоби.  [c.217]

Рассмотренный случай показывает, что введенные преобразования переменных (3.6) являются не просто математическим формализмом, а имеют под собой более глубокое физическое содержание. В электродинамике и теории поля они соответствуют переходу от одного множества локально лоренцовых систем отсчета (х, t) к другому х), где иХ имеют смысл новой пространственной координаты и времени. Заметим однако, что в механике преобразование Лоренца (3.12) нельзя трактовать как переход от одной инерциальной системы отсчета к другой. В этом случае динамические процессы описываются уравнением [1.4  [c.92]

Современная теория годографов ньютоновой механики позволяет произвести полный анализ годографа траекторий в векторном пространстве любого порядка. Теория годографов для баллистических траекторий включает в себя уравнения движения, функции преобразования годографов и годографические отображения для пространств ускорений и скоростей. Одно из основных направлений дальнейшей работы состоит в выводе и применении определяющих уравнений годографа для активных участков траектории, а также в разработке методов синтеза, главным образом с помощью дифференциальной и инверсивной геометрий. Другим не менее важным направлением является распространение теории годографов на траектории, определяемые присутствием более чем одного притягивающего тела (ограниченная задача трех тел, задача п тел). Оба направления, по-видимому, в достаточной степени перспективны как с аналитической (новые методы небесной механики), так и с инженерной (новые принципы построения систем управления и наведения) точек зрения.  [c.40]

Годографические преобразования и отображения представляют собой мощный аналитический способ исследования динамики движения твердого тела методами геометрии, который, по мнению Гамильтона, Якоби и других классиков динамики, всегда заслуживал серьезного внимания и изучения. Подробно разработанная к настоящему времени строгая математическая теория евклидовых и неевклидовых геометрий пока еще остается в стороне от сложных нелинейных задач ньютоновой механики. Кроме того, успехи теории преобразований, достигнутые в двадцатом веке, позволяют считать пересмотр задач классической механики с этой точки зрения не только вполне возможным, но и весьма желательным.  [c.52]

Теория годографов в ньютоновой механике для систем твердых тел пока еще находится в начальной стадии своего развития и разработки. Поэтому существующие прикладные методы полностью основываются на годографе скорости, который исследован и продолжает изучаться наиболее интенсивно. Ниже кратко будут рассмотрены природа и диапазон применения современных годографических методов. Так как годографическое отображение в пространство ускорений и соответствующие годографические преобразования были разработаны лишь недавно, то к настоящему времени получено еще не так много результатов, связанных с приложениями годографов ускорения к конкретным задачам. Тем не менее здесь будут кратко описаны и рассмотрены известные на сегодняшний день прикладные методы, связанные с годографами ускорений, а также такие методы, которые можно применить непосредственно, без дальнейшего углубленного исследования. Для того чтобы упростить описание основных теоретических предпосылок и практических методов, ограничимся рассмотрением плоских траекторий (т. е. траекторий в двумерном пространстве). За исключением особо оговариваемых случаев, приложение тяги полагается импульсным (большая тяга, действующая в течение короткого времени), что позволяет считать изменения вектора скорости практически мгновенными.  [c.58]

Современная теория годографа в ньютоновой механике позволяет полностью исследовать поведение годографа траектории в ньютоновом векторном пространстве любого данного порядка. Теория годографа для баллистических траекторий представлена уравнениями движения, контурными сетками и функциями преобразования годографа в векторных пространствах скоростей и ускорений. Одно из основных направлений, в которых эта область продолжает развиваться,— разработка и применение определяющих уравнений годографа и метода синтеза к исследованию активных участков траекторий главным образом путем использования дифференциальной геометрии. Другое важное направление — применение теории годографа к траекториям, связанным более чем с одним притягивающим центром (ограниченная задача трех тел и задача п тел). Оба направления обещают принести свои плоды как с аналитической точки зрения современной небесной механики, так и в отношении технических приложений к проектированию перспективных систем наведения и управления. Илл. 25. Библ, 50 цазв.  [c.236]

Можно считать, что эти два уравнения определяют группу масштабных преобразований (аналогичных группе трансляций или группе движений в классической механике). Они получили название уравнений ренормализационной группы (или кратко РГ-урав-нений) ). Эти уравнения совместно с (10.6.2) и (10.6.3) играют ключевую роль в теории Вильсона. Чтобы теорию можно было использовать, допустим, что uni являются аналитическими функ-циями К1,, даже в критической точке. Одно из прекрасных качеств теории заключается в том, что она позволяет показать, каким образом система дифференциальных уравнений с аналитическими коэффициентами может совершенно естественно приводить к критическим сингулярностям.  [c.380]

Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]

Принципиально новым шагом в развитии взаимосвязи симметрия — сохранение были открытие и разработка Софусом Ли теории бесконечно малых канонических преобразований и установление на этом пути канонического варианта обсуждаемой взаимосвязи. С. Ли вошел в историю науки, прежде всего, как создатель теории непрерывных групп. Но основной движуш вй силой этих его исследований было стремление разработать обш,ую теорию интегрирования дифференциальных уравнений, аналогичную теории Галуа для алгебраических уравнений Благодаря новой принадлежаш,ей ему концепции задачи интегрирования дифференциальных уравнений он пришел, с одной стороны, к открытию преобразований прикосновения (или,что то же самое, касательных или контактных преобразований, совпадающих в механике с каноническими преобразованиями. — В. В.) и к теории инвариантов этих преобразований, а с другой стороны, к теории конечных непрерывных групп преобразований... Основные понятия и первые применения тео-232 рии канонических преобразований связаны с именем Якоби (см. гл. XI). Но наиболее глубокие результаты в развитии этой теории были, достигнуты лишь благодаря введению Софусом Ли бесконечно малых преобразований. В 1899 г. Дарбу писал в некрологе, посвященном С. Ли  [c.232]

Галилеева симметрия в конце XIX в. не включалась в канонический формализм как мы уже отмечали, вопрос о том, какой закон сохранения отвечает ей, оставался открытым. В силу особой роли времени в классической механике галилеево-ньютонова группа как некоторая единая система преобразований, действующая на пространственно-временном многообразии, оставалась неизвестной, несмотря на то, что все ее генераторы были известны, по существу говоря, со времени Галилея и Ньютона. Галилеев принцип относительности имел большое значение для обоснования системы Коперника (Галилей), использовался Гюйгенсом в качестве одного из главных постулатов теории упругого удара, но уже в Началах Ньютона формулировался в виде следствия из трех основных аксиом или законов механики, а в механике XVIII в., как правило, не фигурировал вообще. Во второй половине XIX в. возобновляется некоторый интерес к физическим основам механики, в частности к вопросам об абсолютном пространстве, инерциаль-ных системах отсчета и принципе относительности Галилея (Э. Мах, К. Нейман, Л. Ланге и др.) . Частично это было связано с проблемой увлекаемо-сти эфира в оптике и электродинамике движущихся сред. Однако исследования эти не носили систематического характера, и галилеева симметрия в механике не рассматривалась на одном уровне с евклидовой симметрией. Отчетливое понимание роли галилеевой симметрии в классической механике и открытие галилеево-ньютоновой группы произошло, по сути дела, после открытия теории относительности. Ф. Клейн в этой связи подчеркивал Эта выделенность t (т. е. времени.— В. В.) играла определенную тормозящую роль в истории развития механики. Несмотря на то, что уже Лагранж  [c.238]


В трехмерной теории упругости в качестве тела, имеющего угловую линию часто брали четверть пространства [18,32,33,51-53,59,63-69], получая приближенные решения при помощи интегрального преобразования Фурье. Например, в работе [33] изучена задача о четверти пространства, жестко заделанной по одной стороне и нагруженной по другой нормальными и касательными усилиями. Для нормального напряжения в заделке составлено интегральное уравнение первого рода и исследован характер особенности решения вблизи ребра. Большой интерес к задачам для упругой четверти пространства проявляют американские и японские механики. Численный метод компенсирующих нагрузок был применен Хетени для получения общего решения для четверти пространства [66] (в западной печати эта задача теперь носит имя Хетени). Задача Хетени пересматривалась и алгоритм ее решения упрощался [65, 67], затем методом типа конечных элементов была рассмотрена контактная задача о действии прямоугольного штампа на упругую четверть пространства [68 .  [c.181]

Если тот же единичный объем среды движется со скоростью V относительно некоторой системы координат наблюдателя (эйлерово пространство), то движение заряда представляет ток век-торы ], Е, В,. .., определенные в этом пространстве, отличаются от Е, В, . .. в той же физической точке среды, т. е. по их природе векторы электромагнитного поля ], Е, В,. .. при переходе ог неподвижной к подвижной системе координат преобразуются по особым законам, отличным от преобразований векторов, ранее рассмотренных, Понятно, что все преобразования в системах координат (декартовых, криволинейных), неподвижных одна относительно другой, сохраняются для ], Е, В,. .. такими же, как и для обычных векторов и тензоров. Эти особенности электромагнитных полей связаны с различием физических законов классической механики и теории относительности, определяемым параметром =v (отношение скорости движения к скорости света).  [c.262]

В последнее время методы калибровочных полей используются для описания структуры и физических свойств неупорядоченных систем. При этом наряду с изучаемыми в механике сплошных сред физическими полями (поле деформаций) появляются калибровочные поля, описывающие дефекты (дислокации, дисклинации, точечные дефекты), ответственные за неупорядоченность [1—8]. Так, в работах [1—2] в качестве калибровочной группы введена группа СЬ(3), что позволяет описать дислокации Сомилианы [9]. В работе [3] взята группа аффинных преобразований ОЬ(3)[>Т(3), что позволило учесть трансляционный вклад в деформацию. Наконец, в работе [4] калибровочной группой является полупрямое произведение группы вращений 80(3) и группы трансляций Т(3), 80(3)>Т(3). Обобщение нелинейной теории упругости локализаций группы 80(3)[>Т(3) дает возможность построить динамику дислокаций и дисклинаций.  [c.20]


Смотреть страницы где упоминается термин Теория преобразований в механике : [c.446]    [c.315]    [c.206]    [c.20]    [c.389]    [c.471]    [c.19]   
Смотреть главы в:

Регулярная и стохастическая динамика  -> Теория преобразований в механике



ПОИСК



Теория преобразований



© 2025 Mash-xxl.info Реклама на сайте