Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центр Понятие

Для введения понятия центра тяжести разобьем мысленно рассматриваемое тело на достаточно большое число малых по сравнению с телом или элементарных его частей произвольной формы. Силу тяжести элементарной частицы тела с индексом / ог действия на нее Земли обозначим через АР,-, а силу тяжести всего тела через Р. Силы тяжести элементарных частиц тела направлены приближенно к центру Земли,  [c.93]


Используя понятие центра тяжести тела, введем понятие его центра масс. Силы тяжести элементарных частей тела и всего тела можно выразить через их массы Аш, и М и ускорение силы тяжести g с помощью формул  [c.94]

Рассмотрим понятие о главных осях инерции. Две взаимно перпендикулярные оси с началом в данной точке, для которых центробежный момент инерции плоской фигуры равен нулю, называют главными осями инерции фигуры в этой точке. Главные оси инерции в центре тяжести фигуры называют главными центральными осями инерции.  [c.168]

Введем важное понятие о моменте силы относительно точки. Точку, относительно которой берется момент, называют центром момента, а момент силы относительно этой точки — моментом относительно центра. Если под действием приложенной силы тело  [c.31]

В 8 было введено понятие о моменте силы относительно центра О. Эго вектор гП(у Р), направленный перпендикулярно плоскости ОАВ (рис. 85), модуль которого согласно формуле (13) имеет значение  [c.72]

Понятие о центре параллельных сил используется при решении некоторых задач механики, в частности при определении положений центров тяжести тел.  [c.86]

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.  [c.132]

Понятие о главных осях инерции играет важную роль в динамике твердого тела. Если по ним направить координатные оси Охуг, то все центробежные моменты инерции обращаются в нули и соответствующие уравнения или формулы существенно упрощаются (см. 105, 132). С этим понятием связано также решение задач о динамическом уравнении вращающихся тел (см. 136), о центре удара (см. 157) и др.  [c.271]

К локальным свойствам кривой относится также понятие кривизны. Предельное положение окружности k, проходящей через точку М кривой и две другие ее близкие точки N а Р, когда Л -> М, Р->- М, называется кругом кривизны кривой в точке М. Центр О круга кривизны называется центром кривизны для точки М и находится на нормали к кривой в направлении ее вогнутости (рис. 81). Радиус R круга кривизны называется радиусом кривизн ы. Величина k = l/R, обратная радиусу кривизны, называется кривизной кривой в исследуемой точке.  [c.64]


Введенные выше понятия имеют непосредственное отношение к определению условий видимости точек поверхности на чертеже. Предположим, что в центре S (см. рис. 108) расположен глаз наблюдателя. Тогда контурная линия разделяет поверхность на видимую и невидимую части, так же и при параллельном проецировании (см. рис. 107).  [c.85]

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений, в частности мостов, дорог и пр., возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах и Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. К этому времени относится введение целого ряда основных понятий, например центра проектирования, картинной плоскости, дистанции, главной точки, линии горизонта, дистанционных точек и т. д.  [c.166]

И на этом пути поначалу были достигнуты большие успехи. Было понято, в частности, что квантование энергии свойственно не только осциллятору, т.е. частице, движущейся под действием возвращающей силы, линейно растущей по мере смещения частицы от какого-то центра. Было понято, что оно свойственно любому движению частиц, если только это движение происходит в ограниченной области пространства. Были сформулированы правила, которые позволили во многих случаях с успехом вычислять допустимые значения энергии . Эти правила были применены для описания состояний электрона в атоме водорода и объяснили многие его свойства.  [c.177]

Действительно, центр тяжести системы тел совпадает с их центром масс. Понятие центр масс системы применимо для любой системы материальных точек независимо от того, находится ли она  [c.90]

Теореме об изменении количества движения и закону сохранения количества движения можно придать иную форму, если ввести понятие о центре инерции системы.  [c.70]

Если считать, что механическая система расположена в поле земного притяжения, то положение центра масс совпадает с положением центра тяжести системы. Вместе с тем понятия центр масс и центр тяжести не следует отождествлять. Центр масс как характеристика распределения масс внутри системы не зависит от того, находится ли данная система под действием каких-либо сил или нет. Иначе говоря, если механическую систему вынести из поля притяжения Земли, то понятие центр тяжести потеряет смысл, а центр масс сохранит и свое положение, и смысл.  [c.144]

Поясни.м понятия абсолютного, относительного и переносного движений на примере. Диск вращается равномерно с угловой скоростью (О вокруг оси, перпендикулярной к плоскости диска и проходящей через его центр О. По диаметру АВ диска с постоянной по величине скоростью движется точка УИ (рис. 5.2).  [c.300]

Одним из графоаналитических методов, нашедшим широкое применение при определении ускорений точек плоской фигуры, является метод, использующий понятие мгновенного центра ускорений.  [c.407]

Понятие центра инерции является обобщением понятия центра тяже-  [c.143]

Момент вектора. Для неподвижного (или для скользящего) вектора можно ввести понятие момента относительно центра и относительно оси. Пусть вектор а приложен в точке М. Положение точки М по отношению к осям Охуг может быть определено радиусом-вектором г, проведенным из центра О в точку /И (рис. 23).  [c.35]

Работой называют способ изменения состояния системы при помощи изменения ее внешних переменных, а теплотой — способ, не связанный непосредственно с изменением внешних переменных. Чтобы совершить работу, необходимо произвести макроскопические перемещения тел в системе или во внешней среде при расширении системы перемещаются окружающие ее тела, при электризации перемещаются тела в источнике, создающем электрическое поле, работа внешнего гравитационного поля связана со смещением положения источника гравитации относительно системы и т. д. Теплопередача происходит без подобных макроскопических перемещений. Молекулярный механизм теплопроводности состоит в передаче энергии от одного колеблющегося атома к другому, т. е. здесь тоже имеет место смещения атомов относительно центров равновесия, но микроскопические и неупорядоченные смещения, которые при усреднении в пространстве и во времени не сказываются на значениях внешних переменных. Теплоту иногда называют микроскопической работой, что несколько сближает терминологию термодинамики и механики (в последней работа является единственной причиной изменения состояния системы), но не меняет существа различий между этими понятиями.  [c.38]


По закону равенства действия и противодействия реакция связи равна той силе, с которой данное тело действует на связь, но направлена в противоположную сторону. Так, например, на самолет, стоящий на аэродроме (рис. 6), действует его вес (активная сила) и, кроме того, в местах соприкосновения колес с Землей на него действуют реакции связей, равные и противоположные давлениям в этих местах со стороны самолета на Землю. На рисунке показаны только силы, действующие на самолет. Силы давления самолета на Землю не изображены. Изучая в статике систему сил, действующих на какое-либо тело, ни в коем случае не следует вносить в эту систему и те силы, с которыми данное тело действует на окружающие тела и, в частности, на связи, потому что эти силы действуют не на данное тело, а на другие тела. В этом примере (см. рис. 6) мы изучаем равновесие системы сил, действующих на самолет, и учитываем вес G самолета, т. е. силу, с которой он притягивается к центру Земли, но, разумеется, не учитываем противодействия этой силе, т. е. силу, с которой самолет притягивает к себе Землю. Точно так же мы не учитываем здесь давлений самолета на аэродром, потому что эти силы приложены не к самолету, а к аэродрому, но учитываем приложенные к самолету реакции аэродрома R , и R.j. Не всегда бывает просто определить направления реакций связи и для их определения полезно пользоваться понятием виртуальные перемещения .  [c.29]

Выражение момента силы относительно точки в виде вектора вполне соответствует физической сущности этого понятия, и если силы расположены в различных плоскостях, то моменты сил относительно точки складывают по правилу параллелограмма. Только при рассмотрении системы сил, расположенных в одной плоскости, можно игнорировать направление вектора момента, а учитывать его величину и знак, т. е. определять момент по формулам (14), (15) или (16). В такой системе, когда все силы и центр моментов расположены в одной плоскости, векторы моментов различных сил относительно какой-либо точки О направлены от точки О перпендикулярно к этой плоскости в ту или другую сторону, и в этом случае их складывают алгебраически.  [c.59]

Понятие центр тяжести впервые установлено Архимедом около 250 г. до н. э.  [c.106]

Понятия о мгновенном центре скоростей и мгновенном центре ускорений плоской фигуры очень удобны для вычислений, но связанные с ними картины распределения скоростей и ускорений не отображают полностью реальное движение фигуры. Это происходит потому, что вводя эти понятия мы рассматривали движение лишь в данное мгновение, при данном положении тела, т. е. пытались рассматривать движение как бы в отрыве от основных условий его сущ,ествования — времени и пространства. Результаты такого подхода к вопросу, конечно, не могут быть полными и объективными.  [c.242]

Понятие центр тяжести и формулы, определяющие координаты этой точки, связаны с весом, с тяжестью. Но в динамике встречается такое состояние механических систем, при котором подобное определение недостаточно. Вспомним, например, состояние невесомости ,  [c.292]

Точка, определяемая координатами (160), совпадает с центром тяжести, но определение ее связано не с весом, а с массой частиц твердого тела или системы. Ее называют центром инерции, или центром масс. Это понятие шире понятия центра тяжести, так как масса не исчезает даже при таких обстоятельствах, при которых вес неощутим. П  [c.292]

Q. Опустим из точки О, принятой нами за центр момента, перпендикуляр (плечо) h на вектор Q или на его продолжение. Соединим центр моментов О с началом и с концом вектора. Произведение количества движения на плечо, или, что то же, удвоенную площадь треугольника ОКБ, изобразим вектором Lo, направленным от центра О перпендикулярно плоскости ОКВ. Вектор Ъо условились восставлять с той стороны плоскости, с которой вектор Q представлялся бы поворачивающимся вокруг центра О против хода стрелок часов. Вектор Lq выражает момент количества движения точки К относительно точки О. Пользуясь понятиями векторной алгебры, скажем, что момент количества движения Lo точки К относительно какой-либо точки О (центра) выражается векторным произведением радиуса-вектора г = ОК на количество движения Q этой точки  [c.144]

Возникает вопрос по отношению к какой системе отсчета центр Солнца движется прямолинейно и равномерно Вполне конкретно и однозначно ответить на этот вопрос невозможно. Ньютон ошибочно полагал, что независимо от материи существует абсолютно неподвижное пространство. Абсолютное пространство по самой сущности безотносительно к чему бы то ни было внешнему, остается всегда одинаковым н неподвижным . Но мы не мыслим пространства безотносительно к внешнему миру, и для нас пространство есть форма существования материи. Материя же немыслима без движения, поэтому не может быть и пространства, которое было бы абсолютно неподвижно безотносительно к чему бы то ни было, т. е. не может быть неподвижной пустоты. Д Аламбер, критикуя Ньютона за то, что он понятия пространства и времени отрывал от понятия материи, писал Те философы, которые хотят создать пустоту, теряются в собственных выдумках .  [c.194]

Курс начинается с раскрытия понятия аффинного точечно-векторного пространства как формальной аксиоматической основы построений теоретической механики. Строится теория преобразований системы скользящих векторов к простейшему виду. Вводится понятие центра масс и тензора инерции и развивается геометрия масс. Весь этот аппарат, помимо теоретической механики, может быть эффективно применен и в некоторых разделах математики [7, 50]. Чтобы подчеркнуть это, ему придана векторно-алгебраическая форма.  [c.10]


Центр масс — одно из важнейших понятий, которое часто будет встречаться в дальнейшем. Применение этого понятия оказывается эффективным не только в механике, но и в других разделах физики, а также для решения многих геометрических задач и получения алгебраических неравенств.  [c.42]

Центр, понятиями в К. о., определяющими состояние поля и картину его флуктуаций, явл. Т. н. корреляционные ф-ции или полевые корреляторы. Они определяются как квантовомеханич. средние от операторов поля (см. Квантовая теория поля). Степень слоншости корреляторов определяет ранг, причём, чем он выше, тем более тонкие статистич. св-ва поля им характеризуются. В частности, эти ф-ции определяют картину совместной регистрации фотонов во времени произвольным числом детекторов. Корреляционные ф-ции играют важную роль в нелинейной оптике. Чем выше степень нелинейности оптич. процесса, тем более высокого ранга корреляторы необходимы для его описания.  [c.263]

При рассмо1рении движения тел, особенно таких, как самолеты, ракеты, космические корабли, важное значение имеет понятие центра гяжесги.  [c.93]

Таким образом, момент силы F относительно центра О равен векторному произведению радиуса-вектора г=ОА, проведенного из центра О в пючку А, где приложена сила, на саму силу. Этот результат может служить другим определением понятия о моменте силы относительно центра.  [c.33]

Механизм, движение которого исследуется, надо изображать на чертеже в том положении, для которого требуется определить соответствующие характеристики. При расчете следует помнить, что понятие о мгновенном центре скоростей имеет место для данного твердого тела. В механизме, состоящем из нескольких тел, каждое непоступательно движуи ееся тело имеет в данный момент времени свой мгновенный центр скоростей и свою угловую скорость.  [c.136]

Из полученных результатов следует, что для твердого тела, находящегося в однородном поле тяжести, положения центра масс и центра тяжести совпадают. Но в отличие от центра тяжести понятие о центре масс сохраняет свой смысл для тела, находящегося в любом. силовом поле (йапример, в центральном поле тяготения),  [c.265]

Понятие о моменте количества движения для одной материальной точки было введено в 85. Главным моментом количеств движения (или кинетическим моментом) системы относительно данного центра О называется величина Ко, равная геометрической сумме моментов количеств движения всех точёк системы относительно этого центра  [c.290]

Определение эволюты и эвольвенты неразрьшно связано с понятием кривизны кривой линии. Если определить положение центров кривизны Oi, Oj,. .., On ряда, принадлежащих данной кривой I (рис. 102), точек Л,, Лз,. .., и соединить их плавной кривой, то получим кривую т, называемую эволютой кривой /. Итак, эволюта есть множество точек, являющихся центрами кривизны линии.  [c.75]

В разделе Статика ( 44 и 45) введены и широко использо-взЕгы понятая моментов силы относительно точки и относительно оси. Так как количество движения материальной точки mv является вектором, ТО можно определить его моменты относительно центра н относительно оси таким же путем, как определяются моменты силы.  [c.145]

Формулами (5) и (6) определяются соответственно радиус-вектор или координаты центра масс центра инерции) тела. Как видно из этих формул, положение центра масс зависит только от распределения масс в объеме, занимаемом телом. Понятие о центре масс является более общим, чем понятие о центре тяжести, так как оно имеет смысл не только для одного твердого тела, но и для любой механической системы кроме того, это понятие не связано с тем, находится тело в поле тяжести или нет. Для тела, находящегося в однородном поле тяжести (в поле тяжести, где -= onst), положения центра тяжести и центра масс совпадают.  [c.213]

В таком движении по отношению ко всякой инерциальной системе находится не только центр солнечной системы, на которую, по нашему заключению, не действуют извне никакие силы, но и каждая материальная частица, находящаяся под действием взаимно уравновешенных сил, потому что наличие взаимно уравновешенных сил эквивалентно их отсутствию (см. 3). Все это требует значительно расширить понятие шнерциальная система- и определить ее как такую систему отсчета, по отношению к которой всякая материальная частица, находящаяся под действием взаимно уравновешенных сил, совершает прямолинейное и равномерное движение. Любую такую систему можно принять за неподвижну.ю при решении задач динамики. В этом зяк.птотается открытый Гяли.леем так называемый прин-цип относительности классической механики.  [c.249]

Как уже было сказано (см. 20), вес G = mg всякого материального тела зависит от местонахождения этого тела на земном шаре, и ускорение g падающих тел не вполне одинаково в различных местах. Это обстоятельство вследствие небольших (сравнительно с Землей) размеров взвешиваемого тела тоже никак не может повлиять на положение его центра тяжести. Но бывает такое состояние материальных тел и механических систем, при котором понятие вес вообш,е теряет смысл. Вспомним, например, состояние невесомости, о котором рассказывают наши космонавты. Кроме того, в мировом пространстве существуют области, где в состоянии невесомости пребывает всякое тело независимо от его движения например, точка пространства, в которой материальное тело притягивается к Земле и к Луне с равными и противоположно направленными силами. В таких случаях теряет всякий смысл и наше определение центра тяжести как центра параллельных сил, но сама точка продолжает существовать и не теряет своего значения. Поэтому целесообразно определять эту точку в зависимости не от веса, а от массы частиц. Понятие центр масс шире понятия центр тяжести, так как масса не исчезает даже при таких обстоятельствах, при которых вес неощутим. Понятие центр масс имеет применение во всякой системе материальных точек, тогда как понятие центр тяжести выведено для системы сил, приложенных к одному неизменяемому твердому телу  [c.135]


Смотреть страницы где упоминается термин Центр Понятие : [c.40]    [c.88]    [c.146]    [c.91]    [c.292]    [c.313]    [c.103]    [c.187]   
Справочник металлиста. Т.1 (1976) -- [ c.220 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.220 ]



ПОИСК



Касательные напряжения, параллельные нейтральной осп. Понятие о центре изгиба

Качество Статистический метод — 597 — Анализ контрольных документов — 636 — Внедрение — 642 — Исключение предположительно установленного переменного рассеивания — 641 — Исключение предположительно установленного смещения центра группирования — 640 — Применяемые понятия

Определение силы и центра давления с помощью понятия пьезометрическая поверхность

Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей. Понятие о центроидах

Определение скоростей точек тела с помощью мгновенного центра скоростей. Понятие о центроидах

Основы технической теории расчета тонкостенных стержней.. — Понятие о свободном и стесненном кручении стержней. . — Изгиб стержня несимметричного сечения. Понятияе о центре изгиба

Понятие о мгновенном центре вращения и мгновенном центре скоростей

Понятие о моделях незамкнутых систем. Теорема о движении центра масс

Понятие о центре жесткости крыла

Понятие о центре изгиба

Понятие о центре изгиба тонкостенных стержней

Понятие о центре тяжести

Понятие о центре тяжести сечения и свойство статического момента

Понятие о центре тяжести тела

Понятие об изгибе тонкостенных балок и центре изгиба

Сложение многих параллельных сил. Понятие о центре параллельных сил

Центр экзаменационный - Понятие



© 2025 Mash-xxl.info Реклама на сайте