Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование канонических уравнений Гамильтона

Итак, мы реализовали намеченную в начале этого параграфа программу и определили движение системы, обходя интегрирование канонических уравнений Гамильтона. Правда, при этом нам понадобилось найти полный интеграл уравнения в частных производных.  [c.324]

В названном мемуаре Остроградский рассматривает вариационную задачу, в которой подынтегральная функция зависит от произвольного числа неизвестных функций и их производных сколь угодно высокого порядка, и доказывает, что задача может быть сведена к интегрированию канонических уравнений Гамильтона, которые можно рассматривать как такую форму, в которую можно преобразовать любые уравнения, возникающие в вариационной задаче. Это преобразование не требует никаких операций, кроме дифференцирования и алгебраических действий. Заслуга такого обобщения задачи динамики принадлежит М. В. Остроградскому.  [c.216]


ИНТЕГРИРОВАНИЕ КАНОНИЧЕСКИХ УРАВНЕНИЙ ГАМИЛЬТОНА  [c.469]

Действие по Гамильтону и его свойства. Можно по-разному подходить к задаче интегрирования канонических уравнений Гамильтона. В частности, ее можно связать со свойствами некоторого интеграла, взятого вдоль интегральной кривой.  [c.469]

С точки зрения задачи точного интегрирования канонических уравнений Гамильтона с гамильтонианом (10.1) наибольший  [c.240]

Во-первых, некоторые решения уравнения (1) можно использовать для интегрирования обыкновенных дифференциальных уравнений динамики. В этом состоит метод Якоби интегрирования канонических уравнений Гамильтона, изложенный в следующем параграфе.  [c.224]

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона  [c.226]

Перейдем к изучению инвариантов систем канонических уравнений Гамильтона, получающихся интегрированием по объему фазового пространства. Сначала докажем теорему Лиувилля об интегральном инварианте произвольной системы дифференциальных уравнений. Пусть движение точки пространства Л переменных х, .., ,Хт задано с помощью следующей системы дифференциальных уравнений  [c.668]

На примере циклических координа.т мы видели (см. 8.4), что успех интегрирования систем дифференциальных уравнений, описывающих движение механических систем, в значительной мере зависит от удачного выбора лагранжевых координат. При переходе от одних лагранжевых координат к другим будут по определенному закону изменяться и обобщенные импульсы, так что в новых фазовых переменных уравнения движения вновь примут вид канонических уравнений Гамильтона. Произвольные преобразования фазовых координат таким свойством, вообще говоря, обладать не будут. Интегральный инвариант Пуанкаре (определение 9.5,1) позволяет, подходя с единых позиций как к преобразованию лагранжевых координат, так и обобщенных импульсов, выделить специальный класс преобразований фазовых переменных, не нарушающих структуру канонических уравнений движения.  [c.680]

Преимущество канонических уравнений. — Канонические уравнения Гамильтона благодаря их особенной форме получили большое применение в механике. Это легко понять, если иметь в виду метод Якоби интегрирования уравнений с частными производными первого порядка. Действительно, канонические уравнения механики, которые могут быть написаны в следующей форме  [c.234]


Это действительно так, если считать, что основная задача механики состоит лишь в интегрировании уравнений движения. Но такая ограниченная точка зрения была бы несправедливостью по отношению к далеко идущим исследованиям Гамильтона. Пользоваться непосредственно главной функцией Гамильтона действительно нельзя, и приходится прибегать к методу Якоби, но тем не менее главная функция Гамильтона остается важной и интересной функцией и служит гораздо более глубоким целям, чем простое интегрирование канонических уравнений. Поэтому сравнение tt -функции Гамильтона с S-функцией Якоби заслуживает того, чтобы на нем остановиться. Постигнув все тонкости теории Гамильтона, мы придем к заключению, что в теории Гамильтона два уравнения в частных производных столь же необходимы и естественны, как одно уравнение в теории Якоби.  [c.292]

Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.  [c.216]

В трех лекциях (XIX, XX, XXI) Якоби вносит существенные усовершенствования в метод интегрирования канонических уравнений, основанный Гамильтоном на рассмотрении уравнений в частных производных.  [c.19]

Геометрическое представление движения в пространстве 2к измерений впервые предложил американский физик Д. Гиббс (1839—1903), который и ввел понятие фазового пространства, считая, что ряд являются ортогональными координатами 2й-мерного евклидова пространства. Использование фазового пространства вносит ряд преимуществ при изучении движения механических систем. Так, например, на многие вопросы механики нельзя дать удовлетворительный ответ, рассматривая одно частное решение системы, соответствующее определенным начальным данным. Необходимо знать все множество траекторий. Движение может начинаться из любой точки /г-мерного пространства в произвольном направлении. В фазовом пространстве задание одной точки Р однозначно определяет всю траекторию. Для полного решения канонических уравнений Гамильтона необходимо знать величины <7,- и р как функции времени 1 я 2к постоянных интегрирования, которые можно интерпретировать как значения 2к координат фазового пространства в момент = 0. Рассматривая 2к координат как различные измерения в фазовом пространстве, можно изобразить полное решение канонических уравнений в упорядоченном виде без пересечений в виде бесконечного множества кривых, заполняющих 2 - -1-мерное пространство (пересечение кривых означало бы, что в одной и той же точке возможны две касательные к кривой, а канонические уравнения при отсутствии особых точек определяют единственную касательную).  [c.468]

Таким образом, задача интегрирования канонических уравнений (1) сводится к отысканию производящей функции 8 Р,д), удовлетворяющей нелинейному уравнению Гамильтона — Якоби  [c.10]

Уравнения (67) называются каноническими уравнениями Гамильтона, а функция Я, зависящая от 25 канонических переменных gi, 72, -.д , Ри. - р времени t, называется функцией Гамильтона. Для механической системы с 5 степенями свободы будет 2s канонических уравнений (67). Уравнения Гамильтона представляют собой обыкновенные дифференциальные уравнения первого порядка . Интегрирование этих уравнений дает 25 величин Qi,. . gs, pi, ps в функции времени и 25 произвольных постоянных.  [c.513]

В 1.13—1.19 были приведены канонические формы уравнений абсолютного и относительного движения задачи п тел. Интегрирование канонических уравнений движения механической схемы с k степенями свободы тесно связано с интегрированием одного уравнения в частных производных, называемого уравнением Гамильтона — Якоби. Оно имеет вид  [c.318]

Другие системы канонических уравнений движения тела вокруг его центра масс связаны с выбором невозмущенного движения, интегрированием надлежащего уравнения Гамильтона — Якоби и каноническими преобразованиями.  [c.755]


Особое значение для теории интегрирования канонических уравнений динамики, составленных Гамильтоном, имеют интегральные инварианты, указанные Пуанкаре и обобщенные Кар-таном в первой четверти XX века [30]. Интегральные инварианты также объединяют понятия механики дискретных систем и представления механики сплошной среды.  [c.7]

После того как динамическая система описана каноническими уравнениями Гамильтона, возникает проблема решения этих уравнений. В задаче двух тел канонические уравнения Гамильтона могут быть решены аналитически. В большинстве других задач, встречающихся в небесной механике и астродинамике, решить уравнения аналитически не удается. Однако, используя методы общей теории возмущений, можно строить решения в виде рядов. Найденные таким образом решения будут справедливы на некотором отрезке времени. При построении полного решения методом последовательных приближений можно, проводя соответствующие преобразования, на каждом этапе получать дифференциальные уравнения, являющиеся по форме по-прежнему каноническими и имеющие в качестве переменных так называемые постоянные интегрирования, полученные в предыдущем приближении. Описанная процедура может повторяться столько раз, сколько потребуется.  [c.216]

В главе V продолжается изложение аналитической механики— рассматривается механика Гамильтона. Глава содержит оптико-механическую аналогию, канонические уравнения, вторую форму принципа Гамильтона, канонические преобразования, метод интегрирования канонических уравнений, известный под названием метода Гамильтона — Якоби, и ряд других вопросов.  [c.7]

Метод интегрирования канонических уравнений, основанный на теореме Гамильтона —Якоби, применяли в решении различных задач многие авторы. Можно указать на [35], [5], [29], [15].  [c.348]

Задача интегрирования системы обыкновенных дифференциальных уравнений порядка 2л в случае общего положения эквивалентна задаче об отыскании 2л независимых первых интегралов. Если уравнения являются системой канонических уравнений Гамильтона, то достаточно знать л первых независимых интегралов в инволюции, чтобы. найти ее общее решение.  [c.181]

Уравнения (132.5) называются каноническими уравнениями механики, или уравнениями Гамильтона. Уравнения Гамильтона представляют собой систему обыкновенных дифференциальных уравнений первого порядка. Интегрирование этих уравнений дает 25 величии с/,, (/2..... qs, Ри Рг,. ..у Ps в функции времени t и 2s  [c.369]

Канонические преобразования могут быть использованы для того, чтобы упростить систему уравнений Гамильтона, сделать ее более удобной для интегрирования. Далее канонические преобразования будут использованы для того, чтобы получить из уравнений Гамильтона иную форму уравнений движения — уравнение в частных производных Гамильтона — Якоби.  [c.312]

Таким образом, вопрос об интегрировании системы канонических уравнений динамики приведен к интегрированию дифференциального уравнения (11.350) в частных производных первого порядка. Дифференциальное уравнение (11.350) далее будем называть уравнением Остроградского — Гамильтона — Якоби )  [c.356]

Чтобы найти общее решение системы канонических, уравнений динамики, достаточно найти функцию V как полный интеграл дифференциального уравнения с частными производными первого порядка уравнения Остроградского — Гамильтона — Якоби) и продифференцировать этот интеграл по обобщенным координатам и постоянным интегрирования а . Приравнивая частные производные от V по обобщенным координатам обобщенным импульсам р , получим первую группу интегралов канонической системы, а приравнивая постоянным интегрирования производные от V по а , найдем вторую группу интегралов.  [c.358]

Мы показали, что интегрирование системы канонических уравнений сводится к нахождению полного интеграла уравнения Гамильтона — Якоби. Это положение имеет не только теоретический интерес. Оказалось, что многие задачи динамики и в том числе задачи, представляющие интерес для теоретической физики, получают на этом пути свое удобное практическое решение.  [c.162]

Функция W известна как характеристическая функция Гамильтона. Мы видим, что она осуществляет каноническое преобразование, в котором все новые координаты являются циклическими. В предыдущей главе мы говорили, что в случае постоянного И такое преобразование, в сущности, целиком решает задачу, так как интегрирование новых уравнений движения становится при этом тривиальным. Канонические уравнения для Р,-фактически снова подтверждают, что импульсы, соответствующие циклическим координатам, являются постоянными  [c.309]

Наконец, в лагранжевой механике не существует какого-либо общего метода упрощения функции Лагранжа. Не существует никакого систематического приема для получения циклических переменных и их можно получить лишь путем удачной догадки. В гамильтоновой механике может быть предложен определенный метод получения циклических переменных и упрощения функции Гамильтона. Этот метод сводит всю задачу интегрирования к нахождению одной фундаментальной функции, являющейся производящей функцией некоторого преобразования. Он играет центральную роль в теории канонических уравнений и, как будет показано в следующей главе, предоставляет широкие возможности для различных обобщений.  [c.226]


Предположим, что мы сумели найти такое преобразование. Тогда канонические уравнения в новой системе координат легко проинтегрировать. Поскольку функция Гамильтона Н инвариантна относительно канонического преобразования, в новой системе функция Гамильтона Н равна Qn- Это означает, что в новой системе координат все переменные циклические - и можно произвести полное интегрирование уравнений движения.  [c.266]

ОТ Времени канонического преобразования. Если функция Гамильтона в новых переменных равна нулю, то из канонических уравнений сразу следует, что в процессе движения все Qi и Pi постоянны. Мы возвратились таким образом к прежнему методу интегрирования, хотя и пришли к нему несколько иным путем.  [c.274]

Случай интегрируемости Лиувилля. Интегрирование канонической системы было сведено в 6 к определению полного интеграла для соответствующего уравнения в частных производных Гамильтона — Якоби.  [c.338]

Ита <, показано, что интегрирование канонических уравнений Гамильтоиа можно заменить нахождением полного интеграла уравнения Гам льто а — Якоби. В общем случае обе эти задачи обладают одинаковой трудностью, одна (о ме Отся динамическ1 е задачи, для которых 1 ахожден е П0. 0Г0 интеграла уравнения Гамильтона— Якоби оказывается более простым, чем интегрирование канонических уравнений Гамильтона.  [c.158]

Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]

После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби развита специальная теория. Эта теория имеет особое значение для небесной механики и для классической теории атома Бора—Зом-мерфельда. Построение этой теории должно было заключать в себе три последовательных этапа. Прежде всего необходимо было найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Гамильтона. Затем надо было установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо было развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона—Якоби.  [c.899]

Следующим этапом является установление общих законов подобных преобразований. Так была развита теория канонических преобразований и их инвариантов. Отсюда видно, что существует глубокая внутренняя связь между аналитической динамикой и общей теорией групп преобразований. Впоследствии эта связь была открыта Софусом Ли (1842—1899), и вся теория приняла удивительно стройный и красивый вид в механику вошли новые идеи, характерные для математики конца XIX в. Якоби показал, что существует такое каноническое преобразование, которое приводит исходные уравнения к новым, легко интегрируемым уравнениям. Таким образом, задача прямого интегрирования канонических уравнений заменяется другой математической задачей найти вид соответствующего канонического преобразования. Наконец, остается задача интегрирования канонических уравнений. Оказалось, что интегрирование этих уравнений равносильно интегрированию уравнения в частных производных так называемого уравнения Гамильтона — Якоби.  [c.217]

Гамильтон считал, что главная функция S должна удовлетворять двум уравнениям в частных производных первого порядка (17) и (18). Это обстоятельство уменьшало, видимо, возможности применения метода к частным задачам механики, Якоби показал, что необходимость соблюдения уравнения (18) совершенно излипшя чтобы иметь возможность проинтегрировать уравнения движения по формулам (16), достаточно найти интеграл лишь одного уравнения (17), содержащий надлежаш ее число параметров. Вместе с тем Якоби показал, что этими параметрами могут и не быть начальные значения координат q. Это существенное улучшение результатов Гамильтона имеет особое значение для применения рассматриваемого метода интегрирования канонических уравнений.  [c.20]

Канонические преобразования сохраняют все общие свойства систем уравнений Гамильтона. Изменяется только вид самой функции Гамильтона. Выще мы видели (теорема 9.4.3), что возможность интегрирования таких систем тесно связана именно со спецификой зависимости функции Гамильтона от фазовых переменных. Если удается найти каноническое преобразование, переводящее функцию Гамильтона к такому виду, что систему, полученную после преобразования, можно проинтегрировать, то тем самым проинтегрируются и исходные канонические уравнения.  [c.687]

Предстапление функции Гамильтона в виде (53) можно эффективно использовать для приближенного интегрирования канонических дифференциальных уравнений движения. Для этого пренебрежем в (53) членами Я, которые имеют более высокую степень относительно Ph, не кели функция И. Тогда Н — П. Замечательно, что система канонических уравнений с функцией Гамильтона /7 = Я (g pi,. . ., (7 р ) сразу интегрируется. Действительно положим Tk = qhPh- Тогда уравнения с функцией Гамильтона и запишутся в виде  [c.323]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]


Интегрирование по частям интеграла (2.15.3) преобразует первый член подинтегрального выражения в —иу. Теперь мы имеем обычную лагранжеву задачу с переменными I/ и и, которая может быть преобразована в гамильтонову форму, что даст две пары канонических уравнений для четырех переменных у, и, pi, р , они заменяют собой одно первоначальное дифференциальное уравнение четвертого порядка для у. Показать эквивалентность канонической системы и первоначального дифференциального уравнения. Очевидно, что этот метод перехода от вторых производных к первым производным применим при любом количестве переменных. В общем случае при наличии производных m-ro порядка следует начать с выших производных, сводя их к производным т — 1)-го порядка затем процесс повторяется до тех пор, пока в подинтегральном выражении останутся одни лишь первые производные. Это и означает, что под-интегральное выражение приведено при помощи преобразования Гамильтона к каноническому виду.  [c.200]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

В литературе дифференциальное уравнение (7.9.22) часто называют дифференциальным уравнением в частных производных Гамильтона — Якоби . Это название совершенно справедливо. Несмотря на фундаментальную важность функции расстояния Гамильтона, его первоначальная схема была неприемлема для целей практического интегрирования. Замечательное открытие Гамильтона дало Якоби ключ к каноническим преобразованиям, что в свою очередь расширило рамки применимости метода самого Гамильтона. С помощью функции Якоби S, на которую наложено гораздо меньше условий, можно найти и гамильтонову lF-функцию. Но было бы практически невозможно найти U -фyнкцию непосредственно путем решения двух совместных уравнений в частных производных. Связь между этими двумя теориями будет обсуждаться более подробно в следующей главе.  [c.263]


Смотреть страницы где упоминается термин Интегрирование канонических уравнений Гамильтона : [c.663]    [c.312]    [c.389]    [c.203]    [c.158]    [c.275]    [c.20]   
Смотреть главы в:

Курс теоретической механики Издание 2  -> Интегрирование канонических уравнений Гамильтона



ПОИСК



Вид канонический

Гамильтон

Гамильтона уравнения

Зэк гамильтоново

Интегрирование

Интегрирование канонических уравнений

Интегрирование уравнений

КАНОНИЧЕСКИЕ УРАВНЕНИЯ Канонические уравнения Гамильтона

Канонические уравнения (уравнения Гамильтона)

Канонические уравнения уравнения канонические

Метод Якоби — Гамильтона интегрирования канонических уравнений Гамильтона

Уравнения Гамильтона интегрирования

Уравнения канонические

Уравнения канонические Гамильтона



© 2025 Mash-xxl.info Реклама на сайте