Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйнштейн теория относительности

Уравнения Максвелла не инвариантны относительно преобразования Галилея. Лоренц (до открытия Эйнштейном теории относительности) обнаружил формальную инвариантность уравнений Максвелла относительно преобразований  [c.40]

Когда задают вопрос Если бы Шекспир не написал Гамлета , Толстой - Войну и мир , Чайковский - Лебединое озеро , смог бы это сделать кто-нибудь другой Обычно отвечают Конечно нет . Однако на вопрос Если бы Менделеев не открыл периодический закон, а Эйнштейн - теорию относительности, смогли бы другие ученые сделать эти открытия Широко распространено мнение, что да, смогли бы.  [c.53]


Первое замечание касается истолкования соотношения Эйнштейна Е = тс , которое дано автором недостаточно четко и не совсем правильно. Это соотношение впервые было установлено Эйнштейном как одно из следствий специальной теории относительности. В последние годы в связи с многочисленными исследованиями различных ядерных реакций его справедливость была  [c.13]

Альберт Эйнштейн (1879—1955) — выдающийся ученый-физик, создатель специальной теории относительности (релятивистская механика) и общей теории относительности.  [c.186]

Новая релятивистская механика (теория относительности), созданная в начале XX в. немецким физиком Альбертом Эйнштейном (1879— 1955), коренным образом изменила представления механики  [c.5]

Теория относительности, созданная А. Эйнштейном, внесла довольно существенные изменения в основания механики и показала ограниченность ньютоновских представлений о пространстве, времени и материи, вследствие чего стало возможным дать простое теоретическое обоснование ряду явлений, которые не могли быть объяснены С точки зрения классической механики. Кроме того, классическая механика оказалась неприменимой к теории строения атома, и это обстоятельство явилось причиной возникновения атомной, или квантовой, механики.  [c.18]

Многочисленными опытами установлено, что весомая масса и инертная масса тела совпадают. Это весьма важное и, на первый взгляд, очевидное положение носит название принципа эквивалентности и является одним из основных положений общей теории относительности А. Эйнштейна, из которой вытекает созданная им теория тяготения.  [c.170]

Все движения механических объектов, изученные в настоящей книге, рассматривались в пространстве, свойства которого е зависят от масс, распределенных в нем. Однако из наблюдений следует, что огромные массы таких космических тел, как звезды, искривляют и изменяют свойства окружающего пространства. Теоретическое рассмотрение механических движений с учетом этого обстоятельства относится к области знания, которую открыл Эйнштейн. Она называется Общая теория относительности или Теория тяготения . В ней оказалось возможным ио новому трактовать вопросы тяготения п инерции. Это область развивающихся современных знаний.  [c.300]

В специальной теории относительности имеет место принцип относительности Эйнштейна, который утверждает все физические явления во всех инерциальных системах отсчета протекают одинаково. Физические явления кроме механических включают также электромагнитные процессы.  [c.252]


Глубокая аналогия между силами инерции и силами тяготения послужила отправным пунктом при построении Эйнштейном общей теории относительности, или релятивистской теории гравитации.  [c.53]

Специальная теория относительности, созданная Эйнштейном в 1905 г., означала пересмотр всех представлений классической физики и главным образом представлений о свойствах пространства и времени. Поэтому данная теория по своему основному содержанию может быть названа физическим учением о пространстве и времени. Физическим потому, что свойства пространства и времени в этой теории рассматриваются в теснейшей связи с законами совершающихся в них физических явлений. Термин специальная подчеркивает то обстоятельство, что эта теория рассматривает явления только в инерциальных системах отсчета.  [c.172]

Был сделан целый ряд попыток объяснения отрицательного результата опыта Майкельсона и аналогичных ему в рамках ньютоновской механики. Однако все они оказались в конечном счете неудовлетворительными. Кардинальное решение этой проблемы было дано лишь в теории относительности Эйнштейна.  [c.176]

Глубокий анализ всего экспериментального и теоретического материала, имеющегося к началу XX в., привел Эйнштейна к пересмотру исходных положений классической физики, прежде всего представлений о свойствах пространства и времени. В результате им была создана специальная теория относительности, явившаяся логическим завершением всей классической физики.  [c.177]

Все содержание специальной теории относительности вытекает из этих двух ее постулатов. В настоящее время оба постулата Эйнштейна, как и все следствия из них, убедительно подтверждаются всей совокупностью накопленного экспериментального материала.  [c.178]

Кроме того, именно в таком виде основное уравнение динамики оказывается инвариантным по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Не останавливаясь на способе доказательства этого, отметим только, что при переходе от одной инерциальной системы отсчета к другой необходимо принять, что сила F преобразуется по определенным законам. Другими словами, сила F в теории относительности — величина неинвариантная, в разных системах отсчета ее числовое значение и направление будут различны.  [c.214]

В основу своей теории, назван ной частной теорией относительности, Эйнштейн положил два постулата, являющихся обобщением опытных фактов  [c.283]

В этой главе,. завершающей изложение основ электромагнитной теории света, прежде всего рассмотрены классические опыты Физо и Майкельсона, проведенные в конце XIX в. и многократно повторявшиеся в XX в. Цель экспериментов состояла в выяснении возможности установления существования абсолютного движения , т.е. движения тел относительно некоторой среды ( светоносного эфира ), которая может служить единой системой отсчета. Неоднозначность толковании прецизионных опытов (в частности, отрицательного результата знаменитого опыта Майкельсона) нацело снимается при формулировке Эйнштейном в 1905 г. исходных постулатов специальной теории относительности, а дальнейшее развитие этой теории привело к кардинальным изменениям всей классической физики.  [c.363]

Вопрос о том, какая их теорий справедлива, должен был решить опыт. Из всего многообразия экспериментальных исследований, связанных с этой проблемой, опишем лишь два принципиальных опыта, критическое исследование которых позволяет прийти к весьма общему выводу, находящемся в противоречии как с электродинамикой Герца, так и с теорией Лоренца. Такое изложение в некоторой степени соответствует формированию идей и накоплению экспериментальных данных, которые нашли свое завершение в создании Эйнштейном специальной теории относительности.  [c.366]

Было необходимо кардинальное физическое решение всей проблемы, которое и достигнуто в трудах А.Эйнштейна, создавшего в 1905 г. специальную теорию относительности.  [c.371]

Указанный факт подтверждает, что инертная и весомая массы отображают одинаковые внутренние материальные свойства тел. В классической механике не пытались выяснить внутренние причины количественного равенства инертной и весомой масс. Этот вопрос был рассмотрен А. Эйнштейном з общей теории относительности. Далее обычно мы не отличаем весомую массу от инертной.  [c.224]


А. Эйнштейн показал, что, переходя в физическом пространстве от геометрии Евклида ( абстрактной геометрии ) к физической геометрии, которой, согласно теории относительности, является геометрия Римана, мы получаем возможность исключить поле сил всемирного тяготения. Конечно, при этом система координат, в которой определяется положение материальной точки, не может быть прямолинейной системой декартовых координат.  [c.444]

См., например, Макс Борн, Теория относительности Эйнштейна и ее физические основы, ГОНТИ, 1938 Э. Тейлор, Д ж. Уилер, Физика пространства и времени, Мир , 1969.  [c.515]

Однако, как отмечено дальше, механика сплошной среды приводит к физическому пространству с более общими свойствами, чем свойства пространства А. Эйнштейна. Конечно, эта аналогия с общей теорией относительности совершенно формальна.  [c.534]

М Борн, Теория относительности Эйнштейна и ее физические основы. ОНТИ, 1938.  [c.538]

А. Эйнштейн, Сущность теории относительности, ИЛ, 1955.  [c.538]

В ряде замечательных, изящных статей Эйнштейн (1917) изложил теорию тяготения и геометрии мирового пространства, названную общей теорией относительности. Эта теория дает двум описанным явлениям объяснение, количественно согласующееся с результатами наблюдений. Эти явления представляют собой пока единственные прямые подтверждения геометрических выводов общей теории относительности. Несмотря на такое малое количество подтверждений, общая теория относительности широко признана из-за своей принципиальной простоты.  [c.31]

В гл. 12 мы получим уравнения (65) и (69), не ссылаясь на понятия четырехмерного вектора и пространства — времени. Однако, познакомившись с этими понятиями, мы овладели еще одним приемом теоретического анализа и получили простой и изящный метод составления уравнений, инвариантных относительно преобразования Лоренца. Этот метод открывает возможность для дальнейших обобщений, ведущих к более абстрактным и математически усложненным теориям — релятивистской квантовой теории и общей теории относительности Эйнштейна. Возможность составлять уравнения, инвариантные относительно преобразования Лоренца, не доказывая в каждом отдельном случае их инвариантность, позволяет физикам рассматривать еще более сложные проблемы, которые не могли бы быть решены иным путем.  [c.371]

Преобразование Лоренца соответствует поворотам системы координат в пространстве — времени. В специальной теории относительности доказывается инвариантность физических законов только относительно этого типа преобразований. Обычная векторная алгебра дает нам систему обозначений, не зависящую от какой-либо конкретной системы координат в обычном трехмерном пространстве. Значение открытия Эйнштейна состоит в обобщении собственно преобразования Лоренца и простой геометрии четырехмерного пространства — времени.. В общей теории относительности Эйнштейн доказал возможность выразить физические законы в форме, независимой от любых преобразований я пространстве — времени, а не только преобразований перехода от одной неускоренной системы отсчета к другой. При этом четырехмерное пространство — время уже не является пространством с евклидовой геометрией — наоборот, оно может обладать кривизной.  [c.371]

Мы приводим начало первой статьи Эйнштейна по специальной теории относительности. Особенно важное значение имеет содержащееся в ней обсуждение понятия одновременности.  [c.371]

Взаимосвязь между превращениями массы и энергии (и количественное соотношение между их приращениями) рассматривалась Эйнштейном как самый значительный вывод теории относительности. Пока частицы не приобретают скоростей, соизмеримых с значением с, можно пользоваться нерелятивистским выражением кинетической энергии, из которого следует, что при любом соударении между частицами (даже при неравенстве чи-  [c.384]

Два основных постулата Эйнштейна — принцип относительности и принцип постоянства скорости света — составляют базу теории относительности.  [c.454]

Из формул преобразования Эйнштейна—Лорентца, составляющих существенную часть теории относительности, вытекает ряд следствий, придающих такое своеобразие выводам этой теории.  [c.459]

Преобразования Галилея. Постулаты специальной теории относительности Эйнштейна  [c.443]

В первой главе мы приняли за основной постулат существование периодического явления, связанного с каждой отдельной порцией энергии, зависимость которой от собственной массы выражена соотношением Планка— Эйнштейна. Теория относительности показала нам, таким образом, необходимость связать с равномерным движением всякого движущегося тела распространение с постоянной скоростью некоторой фазовой волны, и мы смогли объснить это распространение, пользуясь представлением Минковского о пространстве-времени.  [c.666]

Творцом теории относительности является Альберт Эйнштейн. Теория относительности была изложена им в 1905 г. в основополагающей работе К электродинамике движущихся тел . Многие результаты этой работы были получены ранее Лармором (1857— 1942), Лорентцом и Пуанкаре (1854—1912). Однако и Лармор и Лорентц принципиально стояли на точке зрения неподвижного эфира, с которым связывалась преимущественная система отсчета. Ближе всего к теории относительности был Пуанкаре, который еще в 1898 г. дал критику hoIihthh одновременности пространственно разделенных событий, повторенную в дальнейшем Эйнштейном. Пуанкаре заполнил также математические пробелы и устранил ошибки, допущенные Лорентцом. Однако принципиально новое и глубокое физическое понимание всей проблемы и последовательное построение теории относительности с единой точки зрения содержится лишь в упомянутой выше работе Эйнштейна, написанной к тому же без всякого влияния своих предшественников.  [c.620]

В начале XX века происходит подлинная революция в физике Макс Планк создает теорию квантов, Альберт Эйнштейн - теорию относительности, Нильс Бор объясняет строение атома, а Эрнест Резерфорд расщепляет его. Силы, скрытые в атоме, завораживают воображение. Одним из первых, кто обратил внимание на возможность использования энергии атома в космической технике, был Роберт Эно Пельтри.  [c.14]


Отметим основные вехи развития механики. Длительный период ее развития характеризовался накоплением экспериментальных фактов, их обобщением, формированием простых законов статики. Переломным моментом следует считать 1687 г., когда появился знаменитый трактат И. Ньютона Математические начала натуральной философии , где были сформулированы основные законы механики, предложена динамическая модель движения тел. Появлению этого трактата предшествовали труды великих ученых, математиков и механиков, таких как И. Кеплер, Т. Браге, Г. Галилей, Р. Декарт, X. Гюйгенс. Каждый из них внес свою крупицу знаний в общечеловеческую копилку. На фундаменте, заложенном И. Ньютоном, быстро начало строиться здание механики в XVHI в. оформляется ряд научных центров в Англии, Франции, Италии, Германии и России. Значительный вклад в развитие механики в XVHI в. внесли Д. Бернулли, И. Бернулли, Л. Эйлер, П. Лаплас, Ж. Д Аламбер. Девятнадцатый век охарактеризовался созданием Ж. Лагранжем аналитической механики. В это время происходит формирование таких разделов механики, как теория упругости, аэро- и гидромеханика. В аналитической механике осуществляется переход к гамильтоновой механике, углубляются и развиваются методы небесной механики. Ярчайший след в механике оставили труды В. Гамильтона, Г. Кирхгофа, С.В. Ковалевской, А.М. Ляпунова, М.В. Остроградского, А. Пуанкаре, Л. Пуансо, С. Пуассона, В. Томсона (Кельвина), П.Л. Чебышева, К. Якоби. Двадцатый век начался с создания А. Пуанкаре и А. Эйнштейном теории относительности. Однако очень скоро выяснилось, что ньютонова модель по-прежнему прекрасно описывает подавляющее большинство наблюдаемых движений, а разработанные математические методы с успехом могут быть применены в новых научных направлениях. Вместе с открытием теории относительности XX в. привел к революционному взрыву в развитии техники (авиастроение, воздухоплавание, кораблестроение, ракетостроение, робототехника и т.д.). Все эти новые направления потребовали создания новых механических теорий, описывающих  [c.15]

Инертная игравитационная массы. Для экспериментального определения массы данного тела можно исходить из закона (1), куда масса входит как мера инертности и называется поэтому инертной массой. Но можно исходить и из закона (5), куда масса входит как мера гравитационных свойств тела и называется соответственно гравитационной (или тяжелой) массой. В принципе ИИ откуда не следует, что инертная и гравитационная массы представляют собой одну и ту же величину. Однако целым рядом экспериментов установлено, что значения обеих масс совпадают с очень высокой степенью точности (по опытам, проделанным советскими физиками (1971 г.),— с точностью до 10 ). Этот экспериментально установленный факт называют принципом эквивалентности. Эйнштейн положил его в основу своей общей теории относительности (теории тяготения).  [c.186]

В начале XX века Альберт Эйнштейн (1879—1955) создал теорик> относительности, которая представляет собой после Ньютона следующий крупный шаг в развитии механики. Основанная на теории относительности релятивная механика вкладывает совершенно новое содержание в основные понятия механики о пространстве, времени, материи и в своих уравнениях учитывает взаимосвязь этих понятий классическая ньютоновская механика является ее частным случаем и в пределе, при малых скоростях и на больших расстояниях от масс, совпадает с релятивной. Кроме того, А. Эйнштейн, введя совершенно новое представление о пространстве, создал теорию тяготения — явления, ранее не поддавшегося объяснению.  [c.15]

Решение основных проблем оптики движущихся сред дано в первой работе Эйнштейна 1 электродинамике двин<ущихся тел (1905 гЛ, разрешившей основные противоречия, связанные с наличием эфира. Эта работа легла в основу специальной теории относительности Эйнштейна и позволила рассмотреть с единой точки зрения явления оптики движущихся сред.  [c.419]

В качестве исходных позиций специальной теории относительности Эйнштейн принял два постулата, или принципа, в пользу которых говорит весь экспериментальный материал (и в первую очередь опыт Майкельсо-на)  [c.177]

Завершает изложение основ электромагнитной теории света рассмотрение оптических экспериментов с движущимися телами. Здесь кратко охарактеризованы экспериментальные основания специальной теории относительности и проанализированы следствий гюстулатов Эйнштейна, позволяющие полностью истолковать все корректные опыты, как предшествовавшие созданию этой фундаментальной теории, так и выполненные во второй половине XX в. Подробно рассмотрены приложения эффекта Доплера, позволяющие выявить особенности оптических. экспериментов и невозможность использования гипотетического эфира даже в качестве системы отсчета.  [c.8]

Следует учитывать, что специальная теория относительности, базирующаяся на этих постулатах, описывает только инер-циальные системы. Конечно, в да пюй системе можно рассматривать ускоренное движение точки см. формулы релятивистской механики (7.28) и др. ], но ускоренное переносное движение относится к проблемам, исследуемым обп ей теорией относительности, развитой в последующих работах Эйнштейна (1916 г. и позднее). Поэтому обречены на провал иногда встречающиеся в популярной литературе попьггки применять формулы специальной теории отн(зсительности к разбору всяких парадоксов, связанных, например, с движением ракет, стартовавших с Земли и вернувшихся на нее после того или иного полета в космосе. Следует помнить, Ч1 0 взлет и возвращение ракеты происходят с громадными ускорениями и поэтому применение аппарата специальной т(юрии относительности см. (7.20) —  [c.372]

Классическая механика Ньютона развивалась на протяжении XVIII — XIX вв., а в XX в. этот процесс развития привел к современной теории относительности, в которой законы классической механики рассматриваются как асимптотические приближения, вытекающие из более общих закономерностей. Однако классическая механика сохраняет огромное практическое значение и теперь, так как отклонения от законов Ньютона, найденные Альбертом Эйнштейном, количественно невелики, если движение тела происходит со скоростью, значительно меньшей, чем скорость света в пустоте, и когда вблизи движущегося тела нет огромных скоплений материи, которые, например, сравнимы с количеством материи Солнца. В современной технике преимущественно применяется классическая механика, за исключением тех случаев, когда, например, требуется исследовать движение элементарных частиц электронов и др., которые движутся со скоростями порядка скорости света в пустоте. По-видимому, аналогичные задачи могут возникнуть также при развитии космонавтики.  [c.21]

Нами кратко рассматривается возиикновеипе специальной теории относительности А. Эйнштейна н предлагается аналитическое описание этой теории посредством введения особого инварианта, имеющего простой геометрический смысл. Выводятся формулы Фойгта — Лоренца преобразования координат как следствий существования упомянутого инварианта.  [c.515]

Представления о пространстве — времени, т. е. математический язык, на котором особенно просто и изящно выражается содержание специальной теории относительности, были разработаны Г. А/1инковским в 1908 г., т. е. после того, как Эйнштейн уже изложил эту теорию. Идеи Минковского не содержат принципиально новых положений, не вытекающих также из наших предыдущих рассуждений, но он продолжил такую математическую форму специальной теории относительности, которая наиболее естественно обобщается в виде общей теории относительности. Минковский начал свою статью следующими словами  [c.364]

Первая работа Эйнштейна по специальной теории относительности была напечатана в Annalen der Physik, 1905, v. 17, p. 891—921, под заглавием Об электродинамике движущихся тел . Указанный том этого журнала содержит три классические статьи Эйнштейна. Одна из них посвящена квантовой интерпретации фотоэлектрического эффекта (с. 132—148) в другой излагается теория броуновского движения (с. 549—560), третья — по теории относительности — цитирована выше. (Следует отметить, что многие из результатов этой статьи были предвосхищены Лармором, Лоренцем и другими.) В том же году в т. 18 того же журнала (с. 639—641) появилась еще одна короткая статья Эйнштейна под заглавием Зависит ли инерция тела от его энергии . Ниже дается сокращенное излох(ение рассуждений Эйьштейна по этому вопросу.  [c.396]


Никогда еще за каких-то 100 лет общепринятая точка зрения на мир (или, как ее еще называют, общечеловеческая парадигма) не претерпевала настолько радикальных изменений. Во многом это было связано с идеей ноосферы В.Вернадского, теорией относительности А.Эйнштейна, разработкой основ кибернетики Н.Внннером, синергетикой Г.Хакена, новым взглядом на проблему времени И.Пригожина, открытием фракталов Б.Мандельбротом. Этот список талантливых людей, или даже в своем роде гениев, можно продолжать. Но вот что чрезвычайно волнующе - мы живем в одно время со многими из них. Сейчас это не кажется чем-то из ряда вон выходящим, но кто отказался бы от возможности поболтать, например, с Альбертом Эйнштейном, современники которого тоже не видели ничего особенного в том, что он живет рядом с ними  [c.15]


Смотреть страницы где упоминается термин Эйнштейн теория относительности : [c.421]   
Физические основы механики (1971) -- [ c.239 ]



ПОИСК



Принцип относительности Галилея. Преобразования Галилея. Постулаты специальной теории относительности Эйнштейна

Теория относительности

Эйнштейн

Эйнштейн. Принцип Гамильтона и общая теория относительности

Эйнштейна общая теория относительности

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте