Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы решения основного интегрального уравнения

Г, Я- Попов [202, 203] предложил новый метод решения основного интегрального уравнения контактной задачи для круговой области контакта, основанный на использовании классических полиномов Якоби и Лежандра.  [c.198]

Метод вы[несения. В настоящем параграфе изложим известные и широко применяемые в теории приближенные решения основного интегрального уравнения переноса излучения в спектральной линии при полном перераспределении по частоте  [c.191]


Тема главы 3 — лазерные резонаторы. Основное внимание здесь также обращено на простое и наглядное теоретическое описание типов колебаний (мод) в конфокальном резонаторе и в резонаторе Фабри—Перо. Приведены результаты компьютерных расчетов распределений поля для этих резонаторов. Указанные расчеты базируются на алгоритмах, построенных еще в начале 60-х годов в настоящее время разработаны методы решения дифракционного интегрального уравнения для лазерного резонатора, не использующие стандартной итерационной схемы типа Фокса и Ли. Такие методы более экономичны, позволяют получать в одном расчетном цикле большой набор резонансных мод и соответствующих им потерь, оперировать с любыми числами Френеля вплоть до границ применимости геометрической оптики [18].  [c.6]

Методы машинного эксперимента широко используются для анализа решений различных интегральных уравнений для функций распределения, а также проверки основных допущений, вве  [c.207]

При численном решении методом последовательных приближений основного интегрального уравнения теории рассеяния света в атмосфере  [c.503]

Оптические методы. Эти методы широко используются для определения температуры потока плазмы как по сплошному, так и по линейчатому спектру излучения. Основное преимущество этих методов в том, что они являются бесконтактными, т.е. не вносят возмущений в измеряемую среду. Недостаток состоит в том, что этими методами измеряется, как правило, некоторая усредненная по линии визирования температура. Отсюда следует, что оптические методы позволяют непосредственно измерять истинную температуру только газовых струй с однородным распределением температуры в поперечном сечении. Если струя неоднородна, но осесимметрична, то путем решения соответствующего интегрального уравнения Абеля можно найти распределение температуры по радиусу струи.  [c.290]

С использованием методов последовательных приближений для решения граничного интегрального уравнения в работах [92, 167, 168] решен ряд прикладных задач оценки прочности деталей прокатных станов. Подробно рассмотрены вопросы численной реализации для случая второй основной задачи теории упругости. Исследованы задачи о прессовой посадке составных цилиндров с учетом температурного воздействия, волочении проволоки из квадратного прута и т. д. Решение поставленных задач сводится к рассмотрению последовательности смешанных задач теории упругости.  [c.14]


В этом отделе мы излагаем один общий метод решения первой и второй основных задач для областей, ограниченных одним простым замкнутым контуром ( 79). Эти решения даются интегральными уравнениями, которые в свою очередь непосредственно получаются из функциональных уравнений, выводимых в 78. Упомянутые функциональные уравнения и являются основой для практических методов, излагаемых в следующих  [c.278]

Д. И. Шерману принадлежат также различные видоизменения этих уравнений, более удобные для исследований общего характера и для приложений. В частности, в работе [11] подробно исследован вопрос распределения характеристических чисел интегральных уравнений, полу-чаемых определенным видоизменением уравнений, приведенных выше, и введением некоторого параметра Я, как это делается в общей теории уравнений Фредгольма. Это исследование показывает, что для значений отвечающих первой и второй основным задачам, решения соответствующих интегральных уравнений могут быть разложены в ряды Неймана, иначе говоря, могут быть получены методом последовательных приближений.  [c.368]

Тем же автором в работе [77] рассмотрены задачи о контакте качения между вязкоупругими цилиндрами, между вязкоупругим цилиндром и жесткой полуплоскостью, между жестким цилиндром и вязкоупругой полуплоскостью. Исследование проводилось в предположении установившегося качения, равных нулю касательных усилий в зоне контакта, а также отсутствия инерционных эффектов. Рассматриваемые задачи свелись к решению соответствующих сингулярных интегральных уравнений относительно распределения контактного давления, ядра которых обладают как сильной, так и слабой сингулярностью. Введение малого геометрического параметра позволило упростить полученные интегральные уравнения, метод решения которых основан в дальнейшем на применении конечного преобразования Гильберта. Контактное давление получалось использованием обычного обратного преобразования. Предложенный способ решения сингулярных интегральных уравнений применим к весьма общей модели вязкоупругого тела с конечным спектром характерных времен. В одном из разделов данной работы наиболее подробно рассмотрен случай, когда материал характеризуется единым временем памяти. Определяя величину у как отношение времени движения частицы в зоне контакта к мере памяти, исследованы возможные случаи поведения материала. В частности, малой величине у соответствует быстрое качение цилиндра и в основном упругое поведение мате-  [c.402]

Как правило, интегральные уравнения решают численно методом последовательных приближений или методом механических квадратур [231]. Ясно, что в любом случае требуется численно вычислять сингулярные интегралы. Существуют два основных подхода к решению этого вопроса.  [c.97]

Большое внимание уделено численным методам решения линейных и нелинейных задач механики деформирования упругих, упругопластических и вязкоупругих тел, численным методам решения дифференциальных и интегральных уравнений, а также прямым вариационным методам. В учебнике изложены основные положения метода конечных элементов, что обеспечит лучшую подготовленность студентов к изучению курса строительной механики. Даются понятия о методе граничных элементов.  [c.3]

Основная идея применения разностных методов состоит в замене непрерывных переменных дискретными. Функции и аргументы заменяются набором чисел, заданных в точках множества, называемого сеткой. Исходные дифференциальные или интегральные уравнения заменяются системой алгебраических уравнений высокого порядка. Хотя в принципиальном плане задача упрощается, но из-за высокого порядка алгебраической системы возникают большие вычислительные трудности, как правило, непреодолимые без использования ЭВМ. При решении дифференциальных уравнений производные в уравнениях и граничных условиях заменяются отношением конечных разностей функций и аргументов. Исходной задаче ставится в соответствие разностная задача или разностная схема. В дальнейшем разность аргументов в соседних узлах сетки будем называть шагом сетки. Будем говорить, что разностное уравнение аппроксимирует исходное дифференциальное, если при неограниченном измельчении сетки разностное уравнение стремится к точному.  [c.224]


Александров А. Я- Решение основных трехмерных задач теории упругости для тел произвольной формы путем численной реализации метода интегральных уравнений. — ДАН СССР, 1973, т. 208, № 2.  [c.677]

Функция MQp называется ядром интегрального уравнения. Поскольку область включает саму точку Q и MQQ оо, ядро обладает особенностью, которая не меняет основных свойств уравнения, однако создает затруднения при его решении. Возможны разные методы решения уравнения (8-4). Рассмотрим метод, основанный па полном осреднении ядра. Для этого разобьем сечения и Зд на элементы конечного размера, выделив два из них, Q и Р. Размеры элементов должны быть такими, чтобы плотности тока JQИ Ур> можно было считать постоянными по сечениям элементов  [c.122]

Основную часть системы представляет анализатор чувствительности Gas, построенный по методу трех точек. Согласно этому методу, полулогарифмические функции чувствительности Vj по параметрам управляющего устройства qj получаются в результате решения относительно Vj интегрального уравнения / t  [c.6]

Рассмотрим основные методы решения интегральных уравнений теплообмена излучением.  [c.209]

Вернемся теперь к поставленной нами примерной задаче (рис. 56). В настоящее время разработаны методы расчетов потенциального потока в решетках лопаточных профилей, при использовании которых получается интегральное решение основных уравнений процесса течения. Можно решить так называемую прямую задачу, т. е. при заданной решетке найти поле скоростей потенциального обтекания решетки потоком, оценив затем потери течения при различных режимах обтекания. Решается и обратная задача по заданному потоку рабочего агента построить решетку с рациональным распределением скоростей (давлений) по поверхности лопаточного профиля, обеспечивающим минимальные потери энергии.  [c.180]

Решение системы уравнений (9-1-1) — (9-1-3) при краевых условиях (9-2-1)-1г (9-2-5) можно получить, пользуясь методом совместного применения интегральных преобразований Фурье и Лапласа подобно тому, как это детально было показано в гл. 6, 6-4. Повторим основные этапы метода решения на примере нахождения полей потенциалов молярно-молекулярного переноса в неограниченной пластине. Для удобства последующих выкладок безразмерные потенциалы переноса обозначим через 0г (1=1, 2, 3) Т = 0 -, 0 = 2 Р = 0з.  [c.431]

По эффективности решения прямой и, в особенности, обратной задач теории гидродинамических решеток метод интегральных уравнений уступает другим современным методам, изложенным в следующих главах, и представляется в настоящее время имеющим в основном методическое значение.  [c.58]

При решении линейных задач динамики для сложных роторных систем можно использовать различные методы — методы динамических податливостей или жесткостей, метод разложения по формам собственных колебаний, метод интегральных уравнений и др. [3, 14, 19, 23, 32, 70, 73]. Ниже изложены основные идеи метода, являющегося развитием метода начальных параметров и позволяющего с единых позиций рассматривать различные задачи о свободных и вынужденных колебаниях роторов при учете разнообразных конструктивных факторов и внешних нагрузок [46].  [c.182]

В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]

Большое внимание в монографии уделено разработке новых и развитию известных аналитических и численно-аналитических методов перечисленных выше задач. Основными из них являются 1) метод сведения парных интегральных уравнений (ИУ) и парных рядов-урав-нений к бесконечным системам линейных алгебраических уравнений (БСЛАУ) первого рода с сингулярной матрицей специальный способ решения этих систем 2) метод однородных решений применительно к телам конечных размеров канонической и неканонической формы 3) метод сведения парных интегральных уравнений к ИУ 1-го и 2-го рода с разностным ядром 4) метод больших Л, построение всех членов разложения с помощью алгебраических рекуррентных соотношений  [c.13]


При исследовании динамических контактных задач для нолуограниченных тел выбор методов исследования напрямую зависит от значений частоты колебания. Случаи низких и средних частот могут быть изучены с применением регулярных методов (см. гл.1) — метод ортогональных многочленов, метод больших Л , метод фиктивного поглош,ения, прямые численные методы и т.д. С ростом частоты колебания регулярные методы, как правило, приводят к алгебраическим системам очень высокой размерности и при дальнейшем росте частоты теряют устойчивость. Сингулярные асимптотические методы (в частности, метод малых Л ) с успехом применялись к решению высокочастотных контактных задач в антиплоском случае [1,2], где символ ядра основного интегрального уравнения допускает факторизацию в простой форме. Данный параграф посвящен развитию сингулярных методов для задач, в которых известные стандартные подходы, как правило, не приводят к явным аналитическим решениям. Изложение, в основном, следует работам автора [3-5].  [c.278]

Из-за чрезвычайно больших трудностей, возникающих при решении топочной задачи, в большинстве работ она рассматривается в упрощенной постановке. Главное упрощение заключается в том, что вместо системы уравнений, описывающей теплообмен в топочной камере, рассматриваются лишь уравнения теплообмена излучением в интегральной форме. Незамкнутость такого описания топочного процесса аннулируется путем задания в качестве граничных условий ряда величин, которые в действительности являются функциями рассматриваемого процесса. Такой подход приводит к тому, что его результаты затруднительно использовать для расчета теплообмена в реальных топочных устройствах. Как известно, основной базой зональных методов расчета являются интегральные уравнения радиационного теплообмена, которые с помощью их алгебраической аппроксимации приводятся к системе алгебраических уравнений.  [c.73]

Другой Способ построения полной асимптотики решения смешанных задач с кольцевой областью раздела граничных условий развит в работах В. С. Губенко, В. И. Моссаковского, Н. М. Бородачева, В. М. Александрова и др. [19, 47, 52, 53, 106, 107, 110, 160—163, 254—256, 292, 322, 414, 417]. Общий метод построения полной асимптотики решения при малых л широкого класса плоских смешанных задач предложен в работе В. А. Бабешко [58]. Здесь основные параметры задачи, по сути дела, представлены в виде асимптотических рядов по ехр (—где ця — корни некоторого трансцендентного уравнения. Построение таких разложений связано с необходимостью решения последовательными приближениями бесконечной алгебраической системы. Главная часть этой системы точно обращается путем решения соответствующего интегрального уравнения Винера — Хопфа.  [c.98]

Полученные к настоящему времени точные решения для полубесконечных пластинок имеют в основном теоретический интерес из-за трудностей в доведении нх до числа. В этом отношении хорошие перспективы открывает использование (Г. Я- Попов [72] Ю. П. Зюкин, А. А. Паскаленко и Г. Я. Попов [31]) метода ортогональных многочленов (1, 4,3) для приближенного решения соответствующих интегральных уравнений и их систем.  [c.290]

Используя эти операторы, обратные задачи светорассеяния можно свести к решению систем интегральных уравнений, что иллюстрируется в главе на примере теории поляризационного зондирования атмосферы. Этот оптический метод технически реализуется с помощью поляризационных нефелометров и бистати-ческих схем зондирования. Поскольку операторы перехода, определенные на совокупности элементов матрицы Мюллера, играют существенную роль и в теории, и в практике обработки оптических измерений, в главе дается обстоятельный анализ их основных свойств. В частности, показана их компактность и непрерывность, возможность их представления в виде интегральных операторов, приведена структура регуляризованного аналога, что весьма важно в случаях их применения в схемах обработки экспериментальной информации. Кратко изложены основы их спектрального анализа. Во избежание формализма авторы используют известные аналогии между интегральными операторами и матрицами.  [c.14]

В 1954 г. в работе автора и М. О. Башелейшвили [14] был предложен другой метод изучения плоской задачи анизотропных тел, основанный на применении методов потенциала и интегральных уравнений в ней было впервые показано, как результаты, полученные -этими методами для изотропного тела, распространяются на анизотропные тела. Основная идея этой работы была затем развита и применена в различных направлениях в работах Т. В. Бурчуладзе [2а, б. в, г], К. М. Месхи [20], Ж. А. Рухадзе [27] и других Наконец, новых работах М. О. Башелейшвили [1а, б, в, г] теория граничных задач, основанная на применении указанных идей, была изложена наиболее компактно. Следует отметить, что в работах [1а, б, в] показана применимость нового метода для построения явных решений граничных задач в некоторых из тех случаев, когда такие решения могут быть получены, например, методами теории функций комплексного переменного. В 1—6 этой и следующей главы эти результаты будут изложены с некоторыми сокращениями и изменениями.  [c.252]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]


Основная идея метода прямых состоит в сведении решения краевой задачи для уравнения с частными производными к решению обыкновенных дифференциальных уравнений. В газовой динамике существует два численных метода, являющихся обобщением метода прямых метод интегральных соотношений Дородницына и метод Теленина, Эти методы используют в основном для решения внешних задач газовой динамики.  [c.180]

В последнее время все более широкое распространение в теории упругости получает метод граничных интегральных уравнений (МГИУ). Эффективность метода позволяет применить его и для решения задач механики разрушения. Сущность этого метода заключается в сведении соответствующей задачи теории упругости к решению интегрального уравнения, а основное его преимущество по сравнению с другими численными методами состоит в том, что он понижает размерность задачи. Остановимся вкратце на выводе интегральных уравнений основных пространственных задач теории упругости и методах их решения [231]. Пусть S — некоторая достаточно гладкая замкнутая поверхность, а и D — области, расположенные внутри и вне ее ( ) = )+ + ) ). Если однородное изотропное упругое тело занимает конечный объем D , то задача называется внутренней. Если же тело занимает бесконечный объем D , то задача называется внешней. Требуется найти регулярное решение уравнения статики упругого тела (2.2)  [c.100]

Основные определения и положения теории массообме-на изложены в 1.1. Как и в теории конвективного теплообмена (см. п. 1.4.1), метод решения конкретной задачи выбирают, сообразуясь с особенностями ее постановки, и требуемой точностью результат . Интегрирование системы дифференциальных уравнений конвективного тепломассообмена может потребоваться при высоких (звуковых и сверхзвуковых) скоростях течения, больших перепадах температуры и концентрации, значительных изменениях физических параметров смеси. Более оперативными, но менее универсальными и точными являются различные модификации интегрального метода (см. п. 1.4.1).  [c.53]

Более современный подход к разработке математической модели теплового режима изложен в [4]. Основной акцент сделан на анализ аналитических решений [39] и применение интегральных преобразований для решения уравнений стационарной и нестационарной теплопроводности. Авторами [4] разработаны методы решения одно- и многомерных задач, приведены программы, реализующие основные алгоррггмы, оценивается сходимость численных методов, включая и метод конечных элементов, изложенный в [28]. Анализ работы [49] позволяет сделать вывод, что на основе общего подхода для каждой сложной задачи, какой является задача теплового режима, необходимо, используя особенности объекта исследования, конструировать собственную методику, удовлетворяющую поставленным целям и требованиям разработки.  [c.79]

Краткое содержание. Гиперзвуковой вязкий поток, обтекающий наклонный клин в условиях теплообмена, исследуется с помощью обобщен -ного интегрального метода Кармана, справедливого для уравнений пограничного слоя сжимаемой жидкости. Введение температурной функции 5 позволяет свести основные уравнения пограничного слоя к двум обыкновенным дифференциальным уравнениям относительно толщины пограничного слоя 8(х) и функции теплоотдачи f x) с параметром S-j, характеризующим интенсивность теплообмена. Обсуждаются решения л х) и f(x) при различных Sq. Числовые примеры наглядно иллюстрируют эффект взаимодействия ударной волны с гиперзвуковым пограничным слоем в условиях как интенсивного, так и малого теплообмена. Показано, что значения локальных коэффициентов поверхностного трения и теплоотдачи зависят в основном от коэффициента вязкости на поверхности тела.  [c.100]

Метод интегральных соотношений, предложенный академиком А. А. Дородницыным [Л. 28], является обобщением метода прямых. Основная идея метода состоит в разбиении области решения кривыми линиями, форма которых определяется границами области. Точное решение обычно достигается при небольшом числе полос. При этом исходные уравнения предварительно интегрируются по одному из направлений и сводятся тем самым к обыкновенным дифференциальным уравнениям относительно интегралов от неизвестных функций. Подынтегральные функции аппроксимируются с помощью различных интерполяционных формул по значениям функций в узлах интерполяции. Это ойеспечивает также явное представление краевых условий в системе обыкновенных дифференциальных уравнений.  [c.351]

Для одной нелинейности (от = 1) выражение (29) представляет собой нелинейное интегральное уравнение типа Гаммерштейна. Решение системы (30) осуществляется переходом к системе линейных алгебраических уравнений относительно ординат процессов yh t) k=, п) на основе замены интегралов конечными суммами. Степенью обусловленности этой системы, а также наличием решения системы уравнений высокого порядка (необходимо 30—40 точек на каждую нелинейность) и определяются в основном возможности метода. Если g (О = О, то приведенные формулы позволяют производить уточнение решений свободных колебаний.  [c.343]


Смотреть страницы где упоминается термин Методы решения основного интегрального уравнения : [c.200]    [c.252]    [c.149]    [c.182]    [c.236]    [c.117]    [c.399]    [c.56]    [c.681]    [c.228]    [c.340]   
Смотреть главы в:

Контактные задачи теории ползучести  -> Методы решения основного интегрального уравнения



ПОИСК



Метод интегральный

Метод интегральный решения уравнения

Метод интегральных уравнений

Метод решения уравнений

Основное интегральное уравнение

Основные интегральные уравнения

Решение интегральных уравнений

Решение основное

Решения метод

Уравнение метода сил

Уравнение основное

Уравнения интегральные

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте