Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямой метод исследования

Прямые методы исследования эффективности  [c.158]

Перейдем к рассмотрению прямых методов исследования.  [c.9]

I. ПРЯМЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ  [c.10]

К прямым методам исследования в электронной микроскопии относятся методы, при которых исследуемый объект помещается внутрь микроскопа, подвергаясь всем отмеченным выше воздействиям электронной бомбардировки, вакуума, повышенной температуры и пр.  [c.10]

В заключение следует отметить, что прямые методы исследования металлов и сплавов всегда необходимо сопровождать косвенными исследованиями с помощью методов отпечатков, которым посвящена следующая глава.  [c.40]


Непосредственное изучение таких поверхностей возможно лишь в отражательном, эмиссионном или растровом микроскопах, наблюдение объектов в которых может быть отнесено также к прямым методам исследования. Однако наибольшее распространение имеют электронные микроскопы просвечивающего типа, обладающие наибольшим разрешением из всех перечисленных типов, и потому для изучения структур поверхностей непрозрачных тел были разработаны и успешно применяются косвенные методы.  [c.41]

ПОВЫШЕНИЕ КОНТРАСТА ПРИ ПРЯМЫХ МЕТОДАХ ИССЛЕДОВАНИЯ  [c.97]

Применения комбинационного рассеяния. Комбинационное рассеяние дает прямой метод исследования строения молекул, позволяя измерять частоты их собственных колебаний, изучать симметрию молекул, внутримолекулярные силы, молекулярную динамику и т. д. Спектры комбинационного рассеяния настолько характерны для молекулы, что с их помощью можно проводить анализ строения сложных молекулярных смесей, когда химические методы анализа не дают желаемых результатов.  [c.300]

Обычно стационарные гидродинамические характеристики тел, свободно движущихся в жидкости, можно удовлетворительно исследовать в универсальных гидродинамических трубах или в трубах со свободной поверхностью. Напротив, нестационарные присоединенные каверны, образующиеся за телами, пересекающими поверхность раздела жидкости и газообразной атмосферы, имеют особые нестационарные характеристики, рассматриваемые в гл. 12. В процессе образования такие каверны заполнены газом. Они могут оставаться заполненными газом в течение всего времени существования или превращаются в паровые каверны перед тем, как исчезнуть, в зависимости от изменения скорости с глубиной на последних стадиях подводного движения. Более того, траектория тела зависит от соотношения гидродинамических сил и ориентации тела в различные моменты времени. При самом прямом методе исследования этой задачи тело выстреливают в газообразной атмосфере над поверхностью раздела с соответствующей скоростью, углом наклона траектории и ориентацией и наблюдают за его движением и поведением каверны. Для исследования на уменьшенных моделях может потребоваться также моделирование атмосферного давления с помощью газов, отличающихся от воздуха (разд. 12.4). Такие эксперименты проводятся в баллистической камере с регулируемой атмосферой.  [c.587]

Электронный микроскоп, дающий на один-два порядка большее разрешение, чем оптический, позволяет подробно изучать тонкую структуру (субструктуру) металла. Одно из наиболее важных достижений электронной микроскопии — возможность прямого наблюдения дефектов кристаллической структуры. В электронном микроскопе (для предупреждения вторичного излучения, искажающего наблюдаемую картину) изучается не самый металл, а лаковый или кварцевый слепок, полученный с поверхности протравленного шлифа и воспроизводящий детали его рельефа, зависящие от действительной структуры металла. В последнее время широко применяется прямой метод исследования на просвет. В этом случае исследуют тонкие пленки толщиной несколько сот ангстрем, прозрачных для электронов, приготовленные из массивных образцов.  [c.13]


В последнее время широко применяется прямой метод исследования на просвет. В этом случае исследуют прозрачные для  [c.16]

По отношению к исследованию той или иной термодинамической функции экспериментальные методы можно условно разделить на прямые и косвенные. Калориметрия, например, является единственным методом, с помощью которого можно опытным путем, не прибегая к термодинамическим соотношениям, определить теплоты образования сплавов она является прямым методом исследования теплот образования. Все остальные методы дают возможность получить теплоты смешения сплавов лишь косвенно, расчетным путем, опираясь на связь энтальпии с другими термодинамическими функциями. На основании одних калориметрических данных в большинстве случаев нельзя определить изобарный потенциал смешения, поэтому его находят с помощью других методов, например метода э.д.с.  [c.6]

При проверке теории дислокаций и исследовании влияния дислокаций прежде использовались косвенные методы обнаружения дислокаций. В частности, для этой цели использовались рентгеновский метод, наблюдение за ростом кристаллов и исследование изменений некоторых свойств кристаллов при пластической деформации. В настоящее время разработаны надежные прямые методы исследования формы и расположения дислокационных линий на поверхности и внутри кристаллов и на границах зерен. В некоторых случаях наблюдают следы выхода дислокации на поверхность образца.  [c.77]

Несомненно, гораздо легче иметь дело с колебаниями плоского слоя газа, чем с колебаниями слоя конечной кривизны, но я предпочел привести косвенный и прямой методы исследования ради самой сферической задачи и соответствующего разложения по функциям Лапласа 1), а также потому, что связь между функциями Бесселя и Лапласа, повидимому, не всегда понимается достаточно четко. Теперь же мы можем продолжать независимое исследование плоской задачи.  [c.289]

Графический метод исследования сводится к построению треугольников линейных скоростей каждого колеса (см. гл. 3) и нахождению из них О), или и,и- Для этого переносятся на вертикаль (см. рис. 15.7,6) характерные точки схемы (ОАВС) и откладывается отрезок АА = v y-,, соответствующий вектору скорости точки А колеса /. Соединяя точки Л и О наклонным лучом (под углом г ) ), получаем треугольник скоростей этого колеса, в котором ОА — прямая распределения линейных скоростей первого колеса.  [c.410]

В восьмой главе излагается применение прямого метода Ляпунова к исследованию устойчивости систем автоматического регулирования и, наконец, последняя, девятая глава посвящена применению частотных методов к исследованию устойчивости движения.  [c.7]

Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]

Основным недостатком итерационных методов является трудность получения оценок их скорости сходимости. Довольно часто получается слишком медленная сходимость и выгоднее решать систему прямыми методами. Для определения оценок скорости сходимости и оптимального значения параметра релаксации а из (1.22) приходится предпринимать специальные исследования, в частности вычислять минимальное и максимальное собственные числа матрицы. Обычно это имеет смысл делать только в случае, когда линейную систему с данной матрицей предполагается решать многократно.  [c.15]


Самый прямой метод исследования системы состоит в ее трактовке как совокупности материальных точек и в использовании для анализа ее движения уже исследованных нами методов динамики точки, Так, иусть нам  [c.144]

ИОННАЯ МИКРОСКОПИЯ. Для прямого анализа расположения атомов вокруг линии дислокации необходимо очень высокое разрешение. В настоящее время такое разрешение дает только ионный микроскоп (ионный проектор), принцип действия которого состоит в следующем. С поверхности образца, представляющего собой иглу с очень малым радиусом закругления острия (менее 10 см), находящуюся под действием поля высокого напряжения, срываются электроны. За счет эффекта поляризации на игле осаждаются молекулы нейтральнм о газа. После соприкосновения с ио-верхностью металла молекулы газа диффундируют к острию иглы. Когда такая молекула попадает в область местного усиления поля высокого напряжения, происходит ее ионизация и ион летит под действием ускоряющего высокого напряжения к флуоресцирующему экрану прибора. Этот метод, имеющий наибольшее разрешение из всех известных в настоящее время прямых методов исследования структуры материалов, позволяет различать отдельные атомы в кристаллах. Увеличение прибора определяется соотношением между радиусом кривизны острия и расстоянием от объекта до экрана и может достигать нескольких миллионов.  [c.94]

Некоторое улучшение контраста изображения при прямых методах исследования может быть достигнуто помещением объекта непосредственно на сетку без пленки-подложки, которая всегда снил ает контраст, оказывая вуалирующее действие. Для этого к сетке крепят нити из волокнистых материалов (асбеста, окислов металлов), на которые наносят распыленный исследуемый материал. Для удержания материала без пленки-подложки могут быть использованы также стеклянные нити, о чем упоминалось в связи с описанием различных методов препарирования порошков. Однако, естественно, такой метод может иметь лишь весьма ограниченное применение.  [c.97]

В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]

Наибольший интерес представляют прямые методы исследования, когда дисперсность распыленного топлива определяют непосредственно измерением размеров капель. К ним относятся методы улавливания капель на пластинку, фотографический иммерсионный (улавливание капель зондами с жидкостью, которая не сру1ешивается с каплями распыливаемой среды, с последующим фотографированием и подсчетом), замораживания капель в ловушке с хладо-агентом и последующего ситового анализа и метод, в котором используются моделирующие вещества, твердые на воздухе и имеющие одинаковые физические свойства с топливом в подогретом состоянии. К таким веществам относятся  [c.98]

При необходимости рассмотрения деталей структуры за пределами разрешающей способности оптических металломикроскопов (4Х X 10 мм) применяют электронный микроскоп, в котором изображение формируется при помощи потока быстро летящих электронов. Различают косвенные и прямые методы исследования структуры. Косвенные методы основаны на специальной технике приготовления тонких слепков — пленок (реплик), отображающих рельеф травленого шлифа. Исследуя полученную реплику, можно наблюдать детали структуры, минимальный размер которых равен 2—5 нм (20—50 А).  [c.107]

Рентгеновские методы являются одними из основных в изучении тонкой структуры деформированных материалов, так как дают достаточно подробные дополнительные данные к прямым методам исследования, использующим, например, электронную и оптическую микроскопию. Преимущество этих методов в том, что материалы и изделия можно исследовать без разрушения и непосредственного контакта, не останавливая производства, а это обеспечивает создание системы неразрушающего контроля дефектной структуры кристаллических твердых тел, находящихся в рабочем состоянии. Для использования интерпретации экспериментальных результатов требуются детальные выражения, описывающие зависимость особенностей распределения интенсивности на дифрактограммах от параметров дислокационной структуры. Часть этих данных содержится в весьма обширной литературе по кинематическому приближению статистической теории рассеяния рентгеновских лучей деформированными кристаллами [3—58]. В настоящей главе в ряде случаев с необходимой подробностью приведены функциональные зависимости и численные значения коэффициентов, определяющих связь экспериментальных данных с параметрами дефектной структуры кристалла. Кроме того, приведены новые результаты по теории рассеяния рентгеновских лучей сильно искаженными приповерхностными слоями и предсказаны рентгенодифракционные эффекты в кристаллах, которые содержат структуры, характерные для развитой пластической деформации материала.  [c.226]


Появление элементов теории дислокаций относится к 20-м годам этого столетия (работы Я. И. Френкеля, Дж. Тейлора, Е. Орована и др.). Однако экспериментальное подтверждение существования дислокаций получено лишь в 50-х годах благодаря развитию экспериментальных средств исследований строения кристаллов. Существование дислокаций было подтверждено как прямыми методами исследования (с помощью ионного проектора, рентгеновской топографии, электронномикроскопического исследования), так и косвенными методами исследования (метод ямок травления, муаровых фигур и др. [49]).  [c.20]

Прямые методы исследования аэрозолей предполагают отбор аэрозольных частиц в измерительное устройство. В реальных неизокинетических условиях пробоотбора из движущейся среды концентрация частиц внутри прибора может отличаться от концентрации частиц в изучаемом аэрозоле. Для количественной оценки и коррекции искажений, вносимых пробоотборником в измерения концентраций аэрозоля, вводится понятие коэффициента аспирации, представляющего собой отношение средней концентрации в измерительном устройстве к счетной концентрации частиц в невозмущенной среде. Коэффициент аспирации может определяться как экспериментально, так и теоретически. Обзор теоретических и экспериментальных исследований процесса аспирации содержится в [1], описание его математических моделей - в [2, 3].  [c.108]

Иа основании результатов прямых структурных исследований о исцрльзованием методов рентгено-структурного анализа, электронной микродифракции, автоионной, ростровой электронной и оптической микроскопии показано, что структу1ш исследованных сплавов представляет собой трехмерные конформации исходной цепочки тетраэдров состава ПМ,)М (с атомом металлоида в центре).  [c.68]

Дастся изложение основ теории усхойчпвоети движения, базирующееся на общем курсе высшей математики для втузов. Основное внимание уделено наиболее эффективным методам иссл< дова-ния — прямому методу Ляпунова, исследованию устойчивости по уравнениям первого приближения и частотным методам. Отдельные главы посвящены исследованию устойчивости движения но стру -туре действующих сил, устойчивости неавтономных систем, в тол числе систем с периодическими коэффициентами, и систем автоматическою регулирования.  [c.2]

Основное внимание в кпиге уделено наиболее эффективным методам исследования устойчивости движения — прямому методу Ляпунова и исследованию устойчивости по уравнениям первого приближения. Отдельные главы посвящены исследованию устойчивости дви>кения по структуре действующих сил, устойчивости движения неавтономных систем, в том числе систем, возмущенное движение которых описывается линейными дифференциальными уравиениями с периодическими коэффициентами.  [c.7]

Одним из наиболее эффективных методов исследования устойчивости движения является прямой метод Ляпунова (очень часто этот метод называется вторым методом Ляпунова). В этой главе прямой метод будет излои си для автономных систем (неавтономные систом1.г рассматриваются в гл. V ll).  [c.29]

В дальнейшем Л. И. Лурье в ряде работ развил идеи, за. гоженные в первой публикации, построил функцию Ляпунова для общего случая, охватывающего весьма широкий класс регулируемых систем, и получил систему алгебраических уравнений, решение которой определяют достаточные условия абсолютной устойчивости. В монографии [33], опубликованной в 1951 г.. А, И. Лурье довел применение прямого метода Ляпунова к исследованию  [c.261]

Наибольший интерес представляют прямые методы наблюдения и исследования дислокаций, их скоплений и точечных дефектов. К ним относятся исследования с помощью ионного проектора, рентгеновской топографии и прямые световые и электрономикроскопические исследования. Прямые методы дают наиболее ценную информацию о дефектах в кристаллах, однако неприменимы для количественных оценок при изучении металлов, подвергнутых значительной пластической деформации, или технических сплавов сложного состава. В этом случае приходится применять косвенные методы исследования рентгеноструктурный анализ с оценкой формы и интенсивности интерференционных максимумов механические испытания измерение внутреннего трения, электрических и магнитных характеристик.  [c.94]

При изучении механизмов пластической деформации методом исследования изменения дислокационной структур )1 был выявлен процесс текстурирования монокристаллов кремния и ниобия. Методом прямого наблюдения дислокационной структуры было (юказано, что при скольжении индентора в поверхностных слоях стали XI8H9T достигается в1>1сокая плотность дислокаций с образованием полос скольжения в виде пакетов. При этом отчетливо наблюдается ориентировка пакетов в направлении, перпендикулярном действию тангенциальных сил [29].  [c.45]

С помощью комплекса рентгенографических, металлографических, микрорентгеноспектральных методов исследования прямых и параллельных шлифов спаев, изготовленных при 1200° С в течение 3—5 мин в атмосфере аргона, было показано [1], (рис. 1), что продукты взаимодействия титана марки ВТ-1-0 с бесщелоч-ным алюмоборосиликатным расплавом представлены силицидами и оксидом титана переменной стехиометрии.  [c.225]


Смотреть страницы где упоминается термин Прямой метод исследования : [c.17]    [c.321]    [c.142]    [c.50]    [c.11]    [c.222]    [c.261]    [c.302]    [c.383]    [c.212]    [c.206]   
Смотреть главы в:

Теоретическая механика в примерах и задачах. Т.2  -> Прямой метод исследования



ПОИСК



Метод прямых

Методы исследования

Повышение контраста при прямых методах исследования

Прямой классический метод исследования динамического поведения



© 2025 Mash-xxl.info Реклама на сайте