Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в упругом теле. Общий случай

Напряжения в упругом теле. Общий случай  [c.297]

НАПРЯЖЕНИЯ В УПРУГОМ ТЕЛЕ. ОБЩИЙ СЛУЧАЙ  [c.301]

При решении задач теории упругости для общего случая трехмерных тел встречаются большие математические затруднения это обстоятельство вынуждает переходить к решению более или менее широких классов частных задач, одним из которых является плоская задача теории упругости. В плоской задаче теории упругости рассматриваются три случая упругого равновесия тела, имеющих большое значение для практики плоская деформация, плоское напряженное состояние и обобщенное плоское напряженное состояние.  [c.99]


Итак, в данной главе излагается способ определения эффективных модулей слоистого тела, каждый слой которого является анизотропным и не обладает никаким частным видом упругой симметрии, т. е. характеризуется 21 упругим коэффициентом. Исследование ограничивается случаем, когда результирующие сила и момент, действующие на слоистое тело, а также поверхностные силы постоянны. Это означает, что межслойные напряжения также постоянны. (Наиболее общий случай, когда последнее условие не выполняется, изучается в настоящее время.) Далее рассматривается определение эффективных коэффициентов теплового расширения.  [c.39]

Сопоставляя поведение реальной трещины в конструкции с деформированием надреза, полученного с помощью предлагаемой модели, можно отметить следующее. Если на некоторых участках по длине трещины возникают нормальные растягивающие напряжения, то трещина в этих местах раскрывается, практически не сопротивляясь прикладываемым нагрузкам уровень, напряжений в прилегающих областях материала невелик. В предлагаемой модели это условие обеспечивается за счет назначения в соответствующих элементах трещины модуля упругости Е, вызывающего разгрузку элементов и значительное увеличение податливости на рассматриваемом участке, В том случае, когда на некотором участке реальной трещины действуют напряжения сжатия, приводящие к контактированию (схлопыванию) берегов трещины, тело с точки зрения передачи силового потока, нормального к трещине, работает как монолит, и модуль упругости в принятой модели для соответствующих элементов трещины назначается равным обычному модулю упругости материала конструкции. При соприкосновении берегов трещины возможны два варианта берега могут проскальзывать относительно друг друга и не проскальзывать. Второй вариант автоматически реализуется при условии Етр = Е. Для реализации первого варианта необходимо обеспечить отсутствие сопротивления полости трещины на сдвиг. Процедура необходимых для этого преобразований для более общего случая — динамического нагружения конструкций — будет изложена в разделе 4.3.1.  [c.202]

Заметим, что в 11.4 аналогичный результат был получен для общего случая напряженного состояния. Однако там было наложено ограничение на физические соотношения, а именно предполагалось, что коэффициент Пуассона не меняется во времени. Если отказаться от этого предположения, то вывод о совпадении напряженных состояний в упругом и вязкоупругом теле оказывается неверным. Если же ограничиться рассмотрением только плоской задачи, то на основании приведенных выше рассуждений можно констатировать, что этот вывод остается справедливым для любой изотропной вязкоупругой пластины или изотропного вязкоупругого тела, находящегося в условиях плоского деформированного состояния.  [c.360]


Заметим, что закон взаимности (сопряженности) касательных напряжений в классической теории упругости является частным случаем общего закона взаимности напряжений если в одной и той же точке напряженного тела  [c.18]

Остановимся теперь на некоторой разновидности смешанных (контактных) задач теории упругости. Как уже отмечалось, при их формулировке предполагается, что разбиение поверхности на участки, где выполняются разные краевые условия, заранее известно. Однако возможен и более общий случай. Вообще говоря, контактная задача (в физическом смысле) ставится как задача о воздействии жесткого тела на упругое. Как правило, начальный контакт происходит в одной точке и лишь при дальнейшем сближении контактирующих тел образуется площадка контакта, которая, вообще говоря, увеличивается в размерах. При этом, естественно, вводится имеющее физический смысл ограничение напряжения вдоль контура, ограничивающего  [c.248]

Если указанные две предпосылки не выполняются, то говорят о нелинейной теории упругости. Последняя может разделяться на а) теорию нелинейную физически (связь между напряжениями и деформациями нелинейна), но линейную в геометрическом (деформационном) отношении б) линейную в физическом смысле, но нелинейную в геометрическом (случай конечных деформаций в идеально упругом теле) и в) нелинейную и в физическом и геометрическом отношениях (общий случай).  [c.50]

Иногда высказывается утверждение, что при любых изотермических процессах нагружения без промежуточных разгрузок для модели пластического тела с упрочнением можно рассматривать связи между полными деформациями и напряжениями как связи, аналогичные связям нелинейной теории упругости. Ниже показывается, что в общем случав это утверждение неверно Для частных путей нагружения для малой частицы такая трактовка допустима. Подчеркнем, однако, что для заданного част-  [c.430]

Задача определения напряженно-деформированного состояния твердого тела в общем случае внутренне статически неопределима, и для ее решения необходимо дополнить уравнения равновесия конкретными зависимостями между напряжениями и деформациями. Рассмотрим нелинейно упругое тело, у которого напряжения являются однозначными функциями деформаций, не зависящими от истории деформирования. Частный случай такого тела (линейно упругого) был подробно описан в гл. 1.  [c.75]

На рис. 21.5 дано изображение двух цилиндрических тел с параллельными осями и радиусами кривизны R и i 2- Тела сжимаются силами F, направленными навстречу друг другу. Пусть силы F равномерно распределены по длине I, общей для обоих цилиндров. В этой ситуации контакт осуществляется по прямоугольной в плане площадке длины I и постоянной ширины 2Ь, рис. 21.5. Считают, как и в предыдущем случае, что опасный объем материала располагается на некоторой глубине под поверхностью контакта. При этом напряженное состояние также является трехосным сжатием, но в отличие от упомянутого случая имеем здесь а ф ф Тем не менее условия перехода как 3 состояние предельной упругости, так и в состояние усталостного повреждения определяют по критерию максимальных  [c.387]

Остановимся также еще на одном моменте, следующем из сделанных выше замечаний относительно возможности убрать особенность при помощи подбора нагрузки на поверхности упругого тела Ситуация здесь абсолютно естественна в рамках следующих рассуждений. Пусть из анализа однородных условий известно, что в изучаемой задаче возможно возникновение сингулярности типа р—а при подходе к некоторой точке. Тогда в каждом конкретном случае главное слагаемое в некотором компоненте тензора напряжений будет иметь вид а Лр . Если величина а полностью определяется типом однородных граничных условий, материалом и геометрией области, то величина А зависит и от характера внешней нагрузки. В такой трактовке ясно, что частный случай Л — О не является указанием на отсутствие особенности в общем случае.  [c.36]


В предыдущих параграфах мы пользовались сингулярным решением для изотропного упругого тела, хотя в большинстве практических случаев рассматриваемые материалы обладают сильно анизотропными упругими свойствами (например, слоистые и армированные материалы, а также большинство материалов естественного происхождения). Возрастание анизотропии сказывается на уменьшении симметрии в упругих свойствах и увеличении числа упругих постоянных, связывающих напряжения и деформации в точке такого тела. В теории упругости анизотропной среды показано, что произвольный анизотропный материал, не обладающий плоскостями симметрии упругих свойств, можно охарактеризовать 21 независимой упругой постоянной [19,20]. Использованную в этом случае форму закона Гука лучше всего продемонстрировать, записав шесть независимых компонент деформаций и напряжений для трехмерного случая в виде векторов j и е и заметив, что наибо-лее общее линейное соотношение между ними представляется в виде матрицы упругих податливостей [С] размером 6x6, откуда  [c.125]

Это представление, совпадающее с представлением Буссинеска, но полученное независимо, допускает ряд обобщений для случая действия массовых сил, анизотропии и т. д. Аналогично через функции, удовлетворяющие би-гармоническому уравнению, могут быть выражены компоненты тензора напряжений. Папкович, а затем и Нейбер показали, что такое представление является чрезмерно общим и что перемещения изотропного упругого тела могут быть выражены через четыре гармонические функции. В дальнейшем этой проблеме посвятили свои исследования многие авторы, обсуждавшие, в частности, вопрос о том, можно ли уменьшить до трех число независимых гармонических функций, через которые выражается общее решение задачи теории упругости.  [c.252]

Наряду с контактными задачами, рассмотренные выше смешанные задачи теории потенциала для полупространства могут быть трактованы как задачи о деформации неограниченного упругого тела, ослабленного плоской щелью, занимающей область S (или S ). Действительно, в случае загружения берегов щели, симметричного относительно ее плоскости, достаточно рассмотреть полупространство, на границе которого в области S (или S ) заданы напряжения, а вне ее отсутствуют касательные напряжения и нормальное перемещение. В случае антисимметричного загружения даже для круговой щели возникают некоторые дополнительные трудности, разрешенные в работах В. И. Моссаковского (1955) и Я. С. Уфлянда (1967), причем в последней работе эта задача рассмотрена как частный случай общей смешанной задачи, когда на всей границе полупространства задано нормальное напряжение, в области S (S ) известно касательное смещение, а в области S (S) заданы касательные  [c.35]

Через любую точку нагруженного упругого тела можно про Be TH бесчисленное множество сечений (площадок) в общем случай нормальные и касательные напряжения, возникающие по этим площадкам, будут различны. Таким образом, говоря о напряжении в какой-либо точке тела, надо обязательно указывать положение площадки, по которой это напряжение действует.  [c.79]

Решение задачи для упругой области состоит в нахождении выражений для компонент напряжений, удовлетворяющих условиям равновесия [уравнения (28)] и совместности [(уравнения (31)], а также граничным условиям, соответствующим рассматриваемой задаче. Аналогично простому интегрированию по одной переменной, дающему при последующем дифференцировании исходную формулу, решение упругой задачи должно удовлетворять исходным уравнениями. Что касается многих стандартных интегральных решений, то математикам известны типы функций, которые, будучи продифференцированы, удовлетворяют этим уравнениям. Любое аналитическое выражение представляется чрезвычайно сложным, если только геометрическая форма тела не описывается простыми математическими функциями. Даже если она и проста, то общие решения для трехмерного случая получить трудно, не сделав соответствующих упрощений, например рассматривая только тела вращения и выполнив основные расчеты для идеализированного состояния, или плоского напряжения (Од = 0), или плоской деформации (Sg = 0).  [c.30]

Наконец, Д. И. Шерман [22] дал (при помощи метода, аналогичного предыдущему) общее решение следующей задачи. Пусть 5 — област , такого же вида, что и в предыдущем параграфе. Требуется найти упругое равновесие (однородного) тела, заполняющего 5, если на границе Ь области заданы нормальная компонента смещения и касательная компонента Т внешнего напряжения. При Г = О эта задача представляет собой задачу о соприкасании рассматриваемого тела с жесткими профилями вдоль границы Ь при отсутствии трения. В следующей главе будет приведено решение этой последней задачи для того случая, когда область  [c.380]

Формулы (11.1.5) представляют перемещения в упругом теле через четыре гармонические функции. Однако в общем случае в граничных условиях фигурируют комбинации этих функций, и воспользоваться известными решениями задач теории гармонических функций, как правило, не удается. Однако в некоторых случаях задача теории упругости сводится к той или иной задаче для уравнения Лапласа таким образом, удается построить эффективные решения. Одной из таких задач служит задача об упругом полупространстве. Пусть упругая среда занимает область пространства а з [О, °°), плоскость а з = О является границей, на которой заданы те или иные условия. Здесь мы ограничимся изучением наиболее простого случая, когда на граничной плоскости равны нулю касательные напряжения Оаз (а = 1, 2). В этом случае, как будет показано, все перемещения и напряжения выражаются через одну гармоническую функцию. Условимся сохранять индексные обозначения только для осей Xi и Х2, ось Хз, будем обозначать как ось z. Как уже было прппято ранее,  [c.368]


Эти выводы, сделанные для случая круглого кольца, сохраняют силу также в самом общем случае двумерной задачи для многосвязного тела. Из общего исследования, которое провел Мичелл ), следует, что для многосвязных тел (рис. 84) уравнения, аналогичные уравнениям (81) и выражающие условие однозначности перемещений, нужно вывести для каждого контура в отдельности, такого, как контура А м В на рисунке. Распределение напряжений в таких телах в общем случае зависит от упругих констант материала. Оно не зависит от эгих констант только в том случае, когда результирующие усилий на каждом контуре обращаются в нуль ). Количественно влияние  [c.148]

Для исследования полей напряжений в слоистых телах, состоящих из большого числа слоев, разработана самосогласованная глобальнолокальная модель. С помощью этой модели в предварительно заданной области (локальной) определяется детальное поведение функций, характеризующих межслойные напряжения, усилия и моменты отдельного слоя, в то время как остальная область (глобальная) представляется с помощью эффективных свойств материала и соответствующих результирующих усилий и моментов. Локальная модель использует теорию [31, 34], которая приближается к теории упругости в пределе слоя с нулевой толщиной. Глобальная модель основывается на подходе [14], с помощью которого в работе Пэйгано получено хорошее соответствие с результатами расчета по теории упругости на глобальной границе для конкретного слоистого композита. Хотя для краткости здесь рассмотрен частный случай расположения глобальной и локальной областей, нетрудно распространить полученные результаты на случаи общего расположения этих областей, включая использование более чем одной глобальной области. Важность последней возможности следует из того факта, что точность модели можно улучшить, используя вместо резкой границы переходную область.  [c.79]

Опыт показывает, что между величинами деформаций и нагрузок существует зависимость. Еще в XVII в. Р. Гук на основании экспериментов с растягиваемыми струнами, спиральными и цилиндрическими пружинами, а также с деревянными балками, пришел к заключению, которое на современном языке можно сформулировать следующим образом в упругих телах усилия пропорциональны деформациям . Дальнейшие исследования показали, что это утверждение, которое Гук назвал общим законом природы, требует ряда уточнений. Установлено, например, что в действительности нельзя говорить об упругих телах, т. е. о телах, деформации которых всегда являются упругими, а следует говорить об упругих деформациях тел в определенном диапазоне усилий и напряжений что закон прямой. пропорциональности является лишь частным случаем линейной  [c.28]

Повидимому, еще не делалось попыток рассмотреть вопрос о возникновении пластических областей вокруг небольшой эллипсоидальной полости в упругом теле, находящемся под действием однородного поля напряжений, когда эти напряжения приложены на большом расстоянии от полости и дей-ствуют по трем взаимно перпендикулярным направлениям. Тем не менее в связи с этой темой следует обратить внимание на замечательную статью М. Садовского и Е. Стернберга ), в которой дано точное решение упругой задачи о распределении напряжений вокруг эллипсоидальной полости для случая, когда тело на бесконечности находится в равномерном всестороннем напряженном состоянии, главные оси которого параллельны осям эллипсоидальной каверны. Полученное ими решение выражено в замкнутом виде через эллиптические функции Якоби, причем приведены формулы для определения концентрации напряжений, вызванных наличием эллипсоидальной полости ). Из этого общего решения в частном случае получается задача о полости в поле чистого сдвига 0i=0, 03=—о, од=0, когда две из трех главных осей эллипсоидальной полости параллельны главным напряжениям и Og. Другие частные случаи относятся к полостям в форме эллиптического цилиндра и сферы.  [c.589]

Общее поле изотерм для твердой среды в предположении о зависимости ее сжимаемости и температурного расширения от давления и температуры. Рассмотрим теперь случай изотропных напряжений а и деформаций е в упругом теле, когда модуль сжатия К= dojde) Q и температурный коэффициент объемного расширения а = (де]дв) зависят от среднего напряжения а и от абсолютной температуры 0, которые могут теперь изменяться в широком диапазоне, а дилатация е остается все еще сравнительно малой величиной. Предположим, что поле изотерм 0 = onst уже определено. Для кристаллических твердых тел при отсутствии аллотропных превращений структуры это поле в плоскости е, а, очевидно, ограничено. Оно должно быть ограничено тремя граничными кривыми. На рис. 1.7 оно не может заходить влево за изотерму 00, соответствующую абсолютной темпера-туре 0 = O = onst, так как не существует температур, меньших абсолютного нуля. Справа на рис. 1.7 оно ограничено некото рой кривой Gm=f em), 3 именно кривой плавления тт твердого тела, за которой среда находится в жидком состоянии. Наконец, сверху на рис. 1.7 оно ограничено кривой разрушения Ц, расположенной над осью е, где о>0, и соответствующей хрупкому  [c.29]

Упругость и вязкость комбинируются в веществе простейшими способами. А. Введение. В упругом теле компоненты малых деформаций являются линейными функциями компонент напряжений. Поведение вещества называется в общем случае вязкам, если скорости необратимых перемещений точек относительно друг друга возрастают с ростом напряжений, вызывающих деформацию вещества. Таким образом, вязкое вещество деформируется при тем больших значениях скоростей деформации, чем больше напряжения, причем простейшим случаем служит идеально вязкое вещество, у которого компоненты скоростей необратимых деформаций возрастают пропорционально соответствуюияим компонентам напряжений. Вязкость твердых веществ становится заметной при повышении температуры. Одним из обычных примеров этого служит подвешенный вертикально прямой стеклянный стержень, нагруженный грузом при температуре, приближающейся к температуре размягчения стекла. При этом наблюдается непрерывное опускание груза, стержень же необратимо удлиняется с тем большей скоростью (пропорционально увеличивающейся с увеличением груза), чем больше груз. В этом параграфе вначале рассматривается несколько типов таких тел, которые можно назвать простейшими идеальными композитными телами, а именно тела, у которых свойства идеальной упругости и вязкости проявляются одновременно и в простейшем сочетании. Примеры такого рода рассматриваются также с целью лучшего уяснения более общих явлений, наблюдаемых в поведении твердых тел при повышенных температурах, как, например, медленной ползучести податливых металлов или поликристаллических твердых тел, находящихся под действием напряжений в течение продолжительного времени. Эти примеры рассмотрены далее при более точных предположениях.  [c.201]

Как уже указывалось выше, закон Гука справедлив для всех упругих тел, но только пока деформации не превосходят предела пропорциональности. Обычно при рассмотрении задач механики упругих тел предполагают, что деформации не превосходят этого предела. Это упр01цает все расчеты и позволяет применять принцип суперпозиции, который заключается в следующем. Представим себе, что мы подвергли тело какой-либо деформации, например растяжению, а затем другой деформации, например сдвигу. Пока предел пропорциональности не достигнут, модули и G, характеризующие упругие свойства тела, являются константами, не зависящими от того, деформировано уже тело или нет. Поэтому при сдвиге в теле возникнут такие же дополнительные напряжения т = G как и в том случае, если бы тело не было предварительно растянуто. Общее напряжение в теле будет представлять собой сумму тех напряжений, которые возникли бы, если бы тело было подвергнуто только растяжению или только сдвигу. Это и есть принцип суперпозиции (наложения) в применении к нашему конкретному случаю. Он справедлив потому, что упругие свойства тела не зависят от деформации (почему и соблюдается закон Гука). Пока всякая новая деформация вызывает такие же добавочные напряжения, как в отсутствие прежних деформаций, в результате многих деформаций получается напряжение, равное сумме всех тех напряжений, которые возникли бы, если бы каждая из деформаций существовала отдельно.  [c.471]


Остановимся еще на одном, казалось бы парадоксальном, примере. Из решения плоской задачи теории упругости для бесконечной области (безразлично — бесконечной или полубеско-нечной) будет следовать, что при неравенстве нулю главного вектора внешних сил перемещения оказываются бесконечными. В этом нет ничего удивительного, поскольку при рассмотрении плоской задачи (допустим, в случае плоской деформации) с позиций пространственной задачи оказывается, что суммарное усилие обращается в бесконечность. Следует заметить, что переходы к бесконечному телу при решении задачи в напряжениях и перемещениях не эквивалентны друг другу. Если в напряжениях переход и возможен, то в смещениях он может и быть ошибочен, что и подтверждается приведенным примером. Для устранения же бесконечных смещений можно предложить, например, такой спосЪб. После того как решение в деформациях определено достаточно точно из решения для бесконечного тела, находят по ним смещения в истинном теле, исходя из его фактических размеров и краевых условий. Разумеется, строгое обоснование предлагаемого подхода затруднительно для общего случая, но в частных задачах, по-видимому, оно может быть достигнуто.  [c.304]

Настоящая монография посвящена исследованию распределения напряжений около трещин в двумерных телах. На основе метода сингулярных интегральных уравнений рассмотрены задачи теории упругости и термоупругости, а также задачи об изгибе пластин и пологих оболочек для однородных изотропных областей, ослабленных криволинейными трещинами. В предыдущей монографии автора Распределение напрялсений около трещин в пластинах и оболочках ( Наукова думка , 1976 соавторы В. В. Панасюк и А. П. Дацышин) предложен метод решения таких задач для системы произвольно ориентированных прямолинейных трещин. Здесь этот метод обобщен на случай гладких н кусочно-гладких криволинейных разрезов-трещин, что дало возможность единым подходом рассмотреть в общей постановке основные граничные задачи для конечных или бесконечных многосвязных областей, ослабленных отвер-стиями н трещинами произвольной формы. По каждому классу задач приведены примеры их решеии51 предложен-  [c.3]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

Отдельные типы напряженных элементов конструкций при ограниченном сроке службы могут работать за пределами приспособляемости. В этом случае при стационарном циклическом нагружении конструкций из циклически стабильных (стабилизирующихся) материалов происходит тэстепенная стабилизация цикла изменения напряжений и скоростей деформации. Существование процесса стабилизации, который асимптотически заканчивается переходом к стационарному циклу изменения напряжений и скоростей деформации, в общей форме было доказано Фредериком и Армстронгом [127] на основе постулата Друккера. В цитируемой работе получила обоснование также единственность (независимость от начального состояния) напряжений в стабильном цикле в областях тела, где скорости неупругой деформации в указанном цикле отличны от нуля. Таким образом, соответствующая теорема для условий упругой приспособляемости, приведенная в [10], может рассматриваться как частный случай.  [c.34]

Предложенная Внуком модель разрушения является более сложной, чем обычная бк-модель и ее обобщение на случай длительного разрушения вязко-упругих тел. Если при применении бк-модели нам необходимо знать две константы материала 6к и а, то в модели Внука их три кроме бк и а входит еще некоторый параметр структуры материала Д, который в общем случае не совпадает с размером лластической зоны R t). Как будет показано ниже (см. 18), общее уравнение роста трещины в вязко-упругой среде (10.5), основанное на бк-модели, преобразуется в уравнение (1.8), если в нем одновременно положить (T= onst, d=A= onst (fi( —размер концевой пластической зоны) и применить аппроксимацию (1.7), т. е. по существу уравнение (1.8) соответствует двухпараметрической модели типа Г. И. Баренблатта [3]. Однако для исследования разрушения вязко-упругих тел такая модель непригодна (см. 6), поскольку одновременное требование постоянства параметров d и а приводит к невыполнению условия конечности напряжений на краю концевой зоны npH A =/-f А во время роста трещины.  [c.15]

Этот же метод в соединении с функциональным уравнением позволяет рассмотреть задачу о кольцевых подкреплениях в несколько более общем случае, например, когда бесконечная односвязная область, занятая сопряженными телами, отображается на внешность круга посредством рациональной функции и подкрепляющее кольцо переходит при этом в концентрическое круговое. При таком предположении случай отображения (6.2) изучался М. П. Шереметьевым (1949), который привел подробное решение с численными результатами для подкрепления отверстия в виде софокус-ного эллиптического кольца. В упомянутой монографии Г. Н. Савина (1951) приводятся результаты вычислений и для других форм упругого подкрепления, доставляемых отображением (6.2), и напряжения на подкрепленном контуре отверстий сравниваются с теми же напряжениями в двух предельных случаях, когда подкрепляющее кольцо абсолютно гибкое (пустота) или когда оно абсолютно жесткое.  [c.64]

Под системой материальных точек, или материальной систе-м о й, понимается в механике такое тело, которое в противоположность твердому может претерпевать изменения формы. Материальная система состоит часто из частей, представляющих в отдельности твердые тела, находящиеся в движении одно относительно другого, например паровоз и его колеса и части парораспределения, пароход и его машина и т. д. Человек, рассматриваемый с точки зрения динамики, представляет собою тоже материальную систему. Нашу планетную систему можно рассматривать как материальную систему, в которой солнце и планеты в отдельности представляют материальные точки. Твердое тело представляет особый частный случай материальной системы, не подвергающейся изменению формы. Общие законы движения материальной системы применяются, главным образом, к твердому телу. При материальной системе особенно важно различие между наружными и внутренними силами. Например, в планетной системе все силы притяжения между отдельными планетами и солнцем представляют собою внутре-нние силы. Если же будет рассматриваться система, состоящая из земли и луны в отдельности, то сила притяжения между землей и луной, действующая как на землю, так и на луну, является внутренней силой, а притяжения солнца и других планет являются для системы земля — луна внешними силами. Напряжения упругого тела являются внутренними силами. В паровозе внутренними силами являются давление пара, давление между шатуном и кривошипом и т. д. внешними силами являются вес паровоза, давление рельс, сопротивление трения рельс, сопротивление воздуха и т. д.  [c.309]

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]


В теории свободных колебаний упругого твердого тела приходится интегрировать. уравнения колебательного движения при заданных граничных условиях, относящихся к напряжениям и смещениям. Пуассон зб) дал решение проблемы свободных радиальных колебаний упругой сферы, а Клебш по образцу решения Пуассона, построил общую теорию. В эту теорию входит обобщение понятия нормальных координат на случай системы с бесконечно большим числом степеней свободы, введение соответствующих фундаментальных функций и доказательство тех свойств этих функций, с которыми приходится иметь дело при разложении любой заданной фуккции по этим функциям. Спор по вопросу о колебаниях струн, стержней, мембран и пластинок, который происходил как до Пуассона так и при нем, подготовил почву для обобщений Клебша. До появления трактата Клебша Ламе ) предложил другую теорию. Будучи знаком с исследованиями Пуассона о двух типах волн, ои пришел к заключению, что колебания всякого упругого тела должны распадаться на два соответствующих класса в согласии С,этим предположением он исследовал колебания различных тел. То обстоятельство, что его решения не удовлетворяли граничным условиям ля тел, поверхность которых свободна от напряжений, в достаточной мере компрометирует его теорию однако она была окончательно оставлена только после того, как все виды свободных колебаний однородной изотропной среди были изучены, и было доказано, что классы, на которые они распадаются, не соответствуют  [c.30]

При существенно разнородных механических свойствах часть объема сварного соединения, нагфимер основной металл, будет являться аккумулятором упругой деформации, и процесс релаксации напряжений в нем будет происходить в условиях дополнительной медленной разгрузки. Те зоны, в которых релаксационная стойкость металла понижена, например мягкие Прослойки, будут испытывать непрерывную догрузку и процесс в них будет идти, как близкий к испытанию на пoJrayчe ть. Испытания образцов и расчет нагфяженного состояния для такого случая целесообразно организовать следующим образом. Для более прочного металла следует получить семейство кривых простой релаксации от различного уровня начальных напряжений о, (рис. 5.4.5,в). Затем по ним рассчитать нагфяженное.состояние для всего тела в предположении, что оно имеет всюду одинаковые свойства, в том числе и для зон мягких прослоек. Так как мягкие прослойки занимают относительно небольшой объем, их вклад в общую релаксацию напряжений будет невелик. В первом приближении можно принять, что уровень интенсивности напряжений в мягких прослойках о, будет  [c.127]

Здесь r,e — локальные полярные координаты с центром в конце трещины (см. рис. 15), Кц — единственный внешний параметр, от которого зависит упругое поле вблизи конца трещины скольжения. Будем назьшать его коэффициентом интенсивности напряжений. (Согласно (2.25) в частном случае однородного тела он совпадает с аналогичйым коэффициентом в [1], поэтому формулы (2.23)—(2.24) дают обобщение этого понятия на общий неоднородный случай.) При у < О поле напряжений получает-  [c.32]


Смотреть страницы где упоминается термин Напряжения в упругом теле. Общий случай : [c.535]    [c.308]    [c.295]    [c.407]    [c.218]    [c.767]    [c.130]    [c.263]    [c.767]    [c.7]    [c.140]    [c.29]   
Смотреть главы в:

Механика Изд.3  -> Напряжения в упругом теле. Общий случай



ПОИСК



Напряжения упругие

Общий случай

Упругие тела

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте