Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженно межслойное

Поведение слоистого композита со схемой армирования [ 45°]s в условиях статического и циклического нагружений также подтверждает выдвинутые автором предположения. Материал с такой схемой армирования можно рассматривать как материал [0790°]s, повернутый на 45° относительно оси действия растягивающей нагрузки. Поворот приводит к увеличению касательных напряжений (межслойных и в плоскости укладки арматуры). Изохроматическая интерференционная картина при растяжении образца из такого композита с поперечным надрезом имеет симметрическую структуру с  [c.68]


Напряжения т в (2.27) можно трактовать как предельные напряжения межслойного сдвига. При развитии трещины на границе слоев их можно трактовать как силы трения, приходящиеся на единицу поверхно-/// сти. Если длина блока превышает / р,  [c.50]

В случае неоднородных анизотропных материалов, какими являются армированные пластики, фактические напряжения в компонентах существенно отличаются от средних. Эти отличия не только количественные, но и качественные. Так, критерии прочности, разработанные для однородных анизотропных материалов, не в состоянии учитывать напряжения в конкретных слоях композитного материала, концентрацию напряжений, напряжения межслойного сдвига, начальные напряжения в компонентах и т. д. Кроме того, при одноосном нагружении (растяжении или сжатии) армированный пластик относительно средних напряжений находится в линейном (одноосном) напряженном состоянии. Фактически даже при таком простом нагружении компоненты армированного пластика находятся в плоском или объемном напряженном состоянии, и для оценки их прочности, определяющей прочность армированного пластика в целом, необходимо использовать соответствующие критерии, учитывающие фактическое напряженное состояние. Следовательно, весьма перспективным путем решения задачи прочности, учитывающим действительную работу армированного пластика, является прогнозирование прочности композитного материала по фактическим напряженным состояниям или фактическим деформациям его компонентов и контактного слоя. Математический аппарат, позволяющий решить такую задачу, в дальней шем будем называть структурной теорией прочности композитных материалов.  [c.114]

Задача определения модулей межслойного сдвига окончательно не решена до настоящего времени. Сложность ее решения обусловлена тем, что межслойные модули сдвига, как правило, определяются на стержнях, где трудно реализовать условия чистого сдвига. Обычно для этой цели используется изгиб коротких балок или кручение стержней с различным отношением параметров их поперечного сечения. Первый способ прост в реализации, но не позволяет получать достоверных сведений вследствие сложного напряженного состояния в образце при малом отношении //Л (см. с. 41). Приближенные зависимости, которые исполь-  [c.45]


Анализ данных табл. 5.17 позволяет сопоставить сопротивление материалов действию растягивающих, сжимающих и изгибающих нагрузок. При испытании на изгиб разрущение образцов происходило в зоне растягивающих напряжений. Разрушения вследствие межслойного сдвига или концентрации напряжений в местах приложения сосредоточенных нагрузок  [c.159]

Распространение изложенного выше подхода на анализ слоистых тел, в которых межслойные напряжения значительно меняются по толщине [14], представляется одним из важнейших направлений будущих исследований в области композиционных материалов.  [c.36]

Итак, в данной главе излагается способ определения эффективных модулей слоистого тела, каждый слой которого является анизотропным и не обладает никаким частным видом упругой симметрии, т. е. характеризуется 21 упругим коэффициентом. Исследование ограничивается случаем, когда результирующие сила и момент, действующие на слоистое тело, а также поверхностные силы постоянны. Это означает, что межслойные напряжения также постоянны. (Наиболее общий случай, когда последнее условие не выполняется, изучается в настоящее время.) Далее рассматривается определение эффективных коэффициентов теплового расширения.  [c.39]

Подойти к решению проблемы расчета предельных напряжений слоистого композита можно также, рассматривая рост зон межслойного разрушения до тех пор, пока не наступит разрушение композита в целом от расслоения или разрушения волокна.  [c.51]

Кроме того, начальные разрушения слоев (поперек направления армирования или сдвиговые) в композите приведут к появлению отдельных трещин между волокнами в этих слоях. Разрушиться может как поверхностный слой, так и слой, лежащий внутри пакета материала. Как только появилась трещина между волокнами, межслойные касательные напряжения вблизи нее обеспечивают действие механизма перераспределения напряжений. Усилия, воспринимаемые слоем, после его разрушения могут быть перенесены на прилегающие неповрежденные слои, допуская тем самым дальнейшее возрастание нагрузки на композит без его разрушения в целом. Ранее уже упоминалось, что понимание особенностей поведения слоистого композита после появления начальных разрушений в слоях при низких уровнях напряжений чрезвычайно важно в задаче оценки несущей способности изделий из слоистых композитов.  [c.80]

В работе [48] эти механизмы разрушения изучены для плоского напряженного состояния вокруг короткой трещины, параллельной волокнам, в одном или нескольких слоях композита (см. рис. 2.28). Установлено, что в исследуемой области существуют межслойные касательные и нормальные напряжения, а также концентрация напряжений в неповрежденных слоях, прилегающих к слою, содержащему трещину, и в самом этом слое рядом с трещиной. Рассмотрены следующие механизмы разрушения нарушение сцепления между слоями, разрушение вследствие перенапряжения в слоях, прилегающих к слою с трещиной, и линейное распространение инициированных трещин в слоях.  [c.80]

На рис. 2.29 показаны типичные зависимости, полученные при помощи предложенного анализа. Верхний график иллюстрирует характерное изменение протяженности а зоны межслойного разрушения при изменении средних напряжений сг, приложенных к композиту. Межслойное разрушение начинается только после того, как напряжения между слоями достигнут уровня Су, соответствующего появлению неупругой области на границе трещины в слое. При дальнейшем росте напряжений вплоть до уровня Ос (рис. 2.29) размер неупругой области увеличивается. При Ос нарушится связь между слоями с трещиной и смежными слоями (начинается процесс расслоения). При этом в большинстве случаев еще возможно дальнейшее увеличение средних напряжений в композите. Как правило, рост напряжений выше уровня сгс составляет 10 ч- 100% в зависимости от свойств материала. Окончательно, при напряжении Od рост области расслоения становится неустойчивым, и последующее малое приращение приложенных напрял<ений приводит к полному разрушению композита. Напряжение Od считается напряжением, приводящим к разрушению слоистого композита от нарушения межслойных адгезионных связей, при условии, что в композите существуют слои с начальными трещинами. Подобное представление процесса межслойного разрушения аналогично рассмотренному ранее процессу распространения трещины в направлении нагружения (рис. 2.27).  [c.82]


На рис. а а — размер зоны межслойного разрушения а — напряжение, приложенное к композиту / —разрушение композита от распространяющейся области нарушения сцепления между слоями.  [c.83]

ЦИКЛОВ С использованием соответственно пересчитанных механических характеристик материала. Предположим, что рассматриваемый слоистый композит содержит начальную поперечную сквозную трещину длиной 2а. Тогда первые несколько циклов нагружения при заданных отношениях напряжений и амплитуды максимального напряжения не приведут к существенным изменениям напряженного состояния у кончика трещины. Последующее длительное воздействие циклической нагрузки вызовет изменения в матрице, волокнах и поверхности раздела. Этот процесс описывается уравнениями (2.6), (2.7). Наступает момент, когда характеристики жесткости и прочности композита изменяются настолько, что появляется возможность распространения трещины в наиравлении нагружения, как показано на рис. 2.27. Вначале рост трещины устойчив — это было показано ранее. Следовательно, геометрия образовавшейся трещины такова, что материал еще может безопасно подвергаться дальнейшему нагружению. При этом продолжается уменьшение модулей упругости и прочности, что, вероятно, вызывает ускорение роста трещины. В конечном итоге после многократного повторения циклов нагружения свойства материала ухудшаются настолько, что при амплитудном значении напряжения трещина прорастает катастрофически и наступает усталостное разрушение. Однако следует иметь в виду, что в результате действия механизмов, тормозящих разрушение, как в случае слоистого композита со схемой армирования [0°/90°] , усталостное испытание может закончиться разрушением образца вследствие падения его прочностных свойств. В процессе усталостного нагружения могут, кроме указанного, проявиться и другие механизмы разрушения, такие, как разрушение волокон в окрестности кончика трещины из-за высокой концентрации напряжений. За этим может последовать распространение поперечной трещины, как показано на рис. 2.31, или межслойное разрушение (расслоение) вблизи надреза (рис. 2.16), или вдоль свободных кромок образца (рис. 2.17). В любом из этих случаев развитие процесса разрушения поддается предсказанию. Получив количественную оценку протяженности области разрушения (определяемой как а или а), можно установить соотношения da/dN или da/dN и сравнить их с экспериментальными данными.  [c.90]

Еще одним видом разрушения, присущим исключительно слоистым композитам, является расслоение в условиях плоского напряженного состояния. В простейшем случае этот вид разрушения можно наблюдать при одноосном растяжении плоских образцов со свободными кромками (рис. 3.21). Причиной такого вида разрушения плоских образцов является высокая концентрация межслойных нормальных напряжений в области, расположенной вдоль свободных кромок ), вызванная различием свойств смежных слоев (коэффициентов Пуассона, коэффициентов термического расширения и т. п.) [38].  [c.133]

Величина межслойных нормальных напряжений связана с последовательностью укладки слоев композита по толщине.  [c.133]

Последовательностью укладки определяется и знак этих напряжений. Предсказание величины и характера распределения межслойных нормальных напряжений требует применения трехмерного анализа. Приближенные решения для слу-чая растяжения образцов с прямыми кромками получены в  [c.134]

Поскольку классическая теория слоистых сред не учитывает межслойных взаимодействий, анализ напряжений на основе этой теории предсказывает одинаковое поведение конструкций из слоистых композитов с различной последова-  [c.147]

Определение предельных напряжений для слоистых композитов исходит, как правило, из информации о прочностных свойствах однонаправленного слоя. Есть все основания утверждать, что при современном состоянии технологии необходимым условием анализа процесса разрушения слоистого композита является предварительная оценка прочностных свойств однонаправленного композита. В то же время существуют очень убедительные данные, что это, условие не является достаточным. Напряженное состояние однонаправленного слоя определяется действием трех главных напряжений (нормальных в направлении волокон и под углом Эб к ним, касательных в плоскости слоя), а также возникающими в композите напряжениями межслойного сдвига и нормальными напряжениями перпендикулярно плоскости слоев. Рассмотрим коротко соотношения между - прочностными свойствами слоя и свойствами составляющих его компонент.  [c.39]

Одним 113 главных преимуществ ориентированных стеклопластиков является высокая удельная прочность в направлении армирования. Практическая реализация этого иреимуще-ства ограничена трудностями, обусловленными относительно низким сопротивлением ориентированных стеклопластиков межслойному сдвигу = 25 50 МПа, "= 2000 2500 МПа) и поперечному отрыву (/ i= 20- 55 МПа), а также сравнительно малой жесткостью ( П 25- 60 ГПа) даже в направлении укладки волокон. Несущая способность тонкостенных конструкций, работающих на устойчивость, в результате сравнительно низкой жесткости стеклопластиков часто теряется задолго до достижения напряжениями предельных значений [56, 80]. 1 1рн создании толстостенных изделий указанные отрицательные особенности начинают проявляться более ярко, так как возрастает число технологических факторов, определяющих эти особенности [6].  [c.6]

Формулы (69) и (70) совпадают с соотношениями (60) и (61). Следовательно, мы можем заключить, что в принятых предположениях приближенная теория (КТП) является точной. Напомним эти предположения (i) слои являются упругими моноклинными (или имеет место моноклинная неоднородность, такая, что ij= ij(l) и ei = ei l), (ii) напряжения не зависят от X я у, причем аз = О, а 04 и as постоянны. Примерами могут служить равномерный изгиб и/или кручение, равномерное мембранное растял<енне, чистый межслойный сдвиг, а также комбинация этих элементарных нагружений.  [c.51]


В этом случае выделяются два элемента один—для оиределе-ния прочности при поперечном растяжении, второй — для определения прочности при межслойном сдвиге. Модель при нагружении композита в поперечном направлении позволяет получить выражение для определения средней деформании в матрице как функции средней деформации композита, величину которой можно че-посредственно сравнить с допустимой деформацией матрицы или, используя диаграмму напряжений, с ее прочностью. Аналогичные соображения приводят к таким же выводам и в случае межслойного сдвига. Подобный анализ называется методом учета деформации. Он применяется для расчета прочности композита при поперечном растяжении и при межслойном сдвиге [13, 14].  [c.50]

Вагнер [104], а затем Дитц и Пеовер [31] разработали элект-рохимичеекий метод для оценки смачиваемости различных графитовых волокон с обработанной поверхностью. При этом фиксировались изменения площади, смачиваемой электролитом, и устанавливалась взаимосвязь таких изменений с прочностью композита при межслойном сдвиге. Метод основан на том, что металлический проводник, контактирующий с электролитом, несет поверхностный электрический заряд величина которого определяется природой растворителя, электролита, материала электрода и падением напряжения на поверхности раздела значение пропорционально площади граничной области [74]. Электрод состоял из отдельных графитовых волокон. Определялась не величина а ее изменение в зависимости от потенциала Е  [c.254]

Межслойное сдвиговое разрушение при испытаниях коротких балок на поперечный изгиб возникает в условиях сложного напряженного состояния [61, 54]. Этот тип разрушения более характерен для элемента конструкции в сложных условиях нагружения, чем для однородно нагруженного однонаправленного композита, подверженного действию одного из напряжений.  [c.154]

Если предполагать, что межслойное сдвиговое разрушение возникает в плоскости, в которой касательные напряжения достигают максимума, а остальные напряжения пренебрежимо малы по сравнению с касательными, то вид разрушения можно считать идентичным разрушению от внутрислойных касательных напряжений. Тогда для предсказания межслойной сдвиговой прочности можно использовать уравнения разд. IV, относящиеся к внутри-слойной прочности пластика. В полуэмпирическом методе поправочные коэффициенты уравнения (29) следует выбирать из экспериментов на поперечный изгиб коротйой балки.  [c.154]

Обсуждаться будет только случай однонаправленного армирования, поскольку по усталости таких композитов проводились наиболее подробные исследования. К тому же наибольший акцент будет сделан на обсуждение результатов испытаний образцов на одноосное нагружение параллельно направлению укладки волокон, так как в этих экспериментах имеет место однородное напряженное состояние и интерпретировать такие результаты проще всего. В большинстве случаев увеличение угла между направлением приложения нагрузки и направлением армирования приводит к понижению усталостной прочности композитов и к изменению вида разрушения, а испытания на изгиб делают более выраженным межслойное разрушение сдвигом.  [c.395]

Общий метод построения предельной поверхности для слоистого композита состоит в следующем предполагая совместность деформирования слоев композита при заданном илоском напряженном состоянии, рассчитывают напряжения в плоскости и деформации каждого отдельного слоя. Определенное таким образом наиряженно-деформированное состояние слоя сравнивается с критерием прочности каждого слоя предполагается, что первое разрущение слоя ) вызывает разрушение слоистого композита в целом. В действительности дело обстоит сложнее, поэтому необходимо углублять понимание особенностей поведения слоистого композита при таких уровнях напряжений, когда в соответствии с выбранным критерием в некоторых слоях уже достигнуто предельное состояние. В зависимости от вида напряженного состояния напряжения, соответствующие началу разрушения слоев, могут не совпадать с экспериментально определяемыми предельными напряжениями композита в целом. Как правило, совпадение наблюдается, если первое разрушение слоя происходит по волокну (по достижении предельных напряжений в направлении армирования). В остальных случаях, когда критерий предсказывает для слоя разрушение по связующему (от нормальных напряжений, перпендикулярных направлению армирования, от касательных — межслойных или в плоскости), экспериментально определенные предельные напряжения композита не соответствуют теоретически подсчитанным. Как теория, так и экспериментальные наблюдения указывают, что подобное поведение слоистых композитов объясняется взаимодействиями между различно ориентированными слоями. Меж-слойные эффекты могут наблюдаться как у свободных кромок, так и внутри материала, когда слои разрушаются от растяжения перпендикулярно направлению армирования или от сдвига в плоскости армирования.  [c.50]

Рис. 2.8. Расслоение у кромок образца слоистого боропластика [ 30 9о7 30°] от нормальных межслойных напряжений (с разрешения Пагано [16]). Рис. 2.8. Расслоение у кромок образца слоистого боропластика [ 30 9о7 30°] от нормальных межслойных напряжений (с разрешения Пагано [16]).
Для построения поверхности прочности слоистого композита на основании рассмотренного метода составлена вычислительная программа иод шифром SQ-5 [18]. Она позволяет исследовать несимметричный (Btj ф 0) композит, нагруженный изгибающими нагрузками и силами в плоскости. В качестве исходных данных в программе используются предельные значения продольных, поперечных и сдвиговых деформаций слоя, определенных при растяжении и сжатии, и средние значения уиругих констант Ей Ei, vi2, Gn- Нагрузки могут иметь как механическое, так и термическое ироисхождение. Программа SQ-5 обеспечивает расчет полного напряженного и деформированного состояний слоя и композита в целом упругих констант композита Е х, Еуу, Vxy, Gxy, А, В, D коэффициентов термического расширения коэффициентов кривизны межслойных сдвиговых напряжений координат вершин углов предельной кривой композита. Кроме того, программа позволяет идентифицировать слои, в которых достигнуто предельное состояние, и соответствующие этому компоненты напряжения.  [c.149]

Микроструктурные исследования показали, что усталостное разрушение биметаллической композиции как при комнатной температуре, так и при 800°С имеет сложный характер — в отсутствие четко выраженного деформационного микрорельефа в науглероженной зоне стали Х18Н10Т, а также в обезуглероженной зоне основного металла интенсивное дробление зерен и разрыхление поверхности сопровождаются образованием многочисленных очагов разрушения. При этом дробление происходит раньше, чем начинается развитие главной транскристаллической или межкристаллической трещины, приводящей к потере несущей способности слоя стали СтЗ. Межслойная поверхность раздела служит эффективным барьером для усталостной трещины,, так как напряженное состояние в вершине движущейся трещины резко изменяется. Магистральная трещина распространяется в плакирующем слое а при слиянии ее с трещиной материала основы образец ломается.  [c.225]



Смотреть страницы где упоминается термин Напряженно межслойное : [c.198]    [c.341]    [c.40]    [c.198]    [c.78]    [c.54]    [c.55]    [c.387]    [c.390]    [c.42]    [c.43]    [c.59]    [c.69]    [c.81]    [c.81]    [c.82]    [c.83]    [c.83]    [c.164]    [c.228]    [c.230]    [c.232]   
Межслойные эффекты в композитных материалах (1993) -- [ c.18 ]



ПОИСК



Напряженно

Напряженность



© 2025 Mash-xxl.info Реклама на сайте