Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стабильность циклическая

Среднее (медианное) значение 129, 131, 133, 137, 141, 143, 147, 149, 166, 168, 172 Среднее квадратическое отклонение 130, 137, 147, 166 Стабильность циклическая 77,  [c.189]

Диаграммы циклического деформирования при мягком нагружения позволяют получить кинетику деформаций, которая необходима для определения деформационных свойств материала при циклическом нагружении, а при жестком — кинетику напряжений при циклическом упругопластическом деформировании. По характеру изменения свойств при многократном упругопластическом нагружений материалы разделяются на три основных типа циклически стабильные, циклически упрочняющиеся и циклически разупрочняющиеся. Циклически стабильными называются материалы, у которых сопротивление многократному упругопластическому деформированию не зависит от числа циклов нагружения. Это означает, что модуль упругости, предел пропорциональности и текучести, секущий и касательный модули не зависят от числа циклов нагружения.  [c.237]


Долговечность первой стадии весьма мала по отношению к долговечности, отвечающей зарождению макроразрушения [ПО, 111, 152]. На самых ранних стадиях процесса формирования зародышевых усталостных микротрещин происходит их притупление за счет пластического деформирования при обратном нагружении. Поэтому микротрещины после зарождения растут стабильно (из-за притупления напряжения в их вершине меньше теоретического предела прочности От. п) по механизму стока дислокаций в их вершины при циклическом нагружении. Условие нестабильного роста микротрещин выполняется при значительном увеличении их длины. Количество циклов, свя-  [c.137]

В работах [232, 234, 356] показано, что для некоторых материалов характеристики вязкости разрушения при циклическом нагружении могут существенно отличаться от характеристик статической трещиностойкости. Циклическое деформирование металла у вершины трещины приводит к нестабильному (скачкообразному) ее развитию при КИН, меньших статической вязкости разрушения Ки. В настоящее время феноменология такого явления достаточно хорошо разработана и описана в работах [29, 197, 232, 234, 267, 356]. Тем не менее физическая природа скачков усталостной трещины изучена недостаточно. Попытаемся дать физическую интерпретацию этого явления. Выше (см. подраздел 2.3.2) была представлена модель, описывающая зарождение усталостного разрушения в масштабе зерна. Разрушение представлялось как многостадийный процесс, включающий зарождение микротрещин по границам и в теле фрагментированной субструктуры, возникающей при циклическом деформировании, стабильный рост микротрещин за счет стока дислокаций в их вершины, образование разрушения в пределах зерна при нестабильном росте микротрещин. Ограничение мае-штаба разрушения при нестабильном росте микротрещин размером зерна возникает в случае их торможения границами зерен или стенками фрагментированной структуры, т. е. при = Oi < 5с(ху), где X/ — накопленная деформация к моменту страгивания микротрещин. Если сгтах 5с(ху), то разрушение может распространяться в масштабе, большем чем размер зерна.  [c.222]

Для циклически стабильного материала к концу каждого цикла НДС на контуре Гд будет одним и тем же (в частности, величина ti и, следовательно, выражение (4.82) можно представить в виде  [c.258]

В промышленных условиях обычно требуется не столько исключительная воспроизводимость, сколько хорошая долговременная стабильность показаний при неблагоприятных условиях (вибрация, давление, перепады температур, агрессивная среда), а также взаимозаменяемость однотипных термометров. Именно поэтому большое значение имеет конструкция корпуса и крепления чувствительного элемента внутри корпуса. Огромное большинство отказов термометров, работающих в условиях промышленного производства, связано о обрывом выводов. Обрыв происходит в результате механических нагрузок, возникающих вследствие теплового расширения при циклических изменениях температуры.  [c.226]


Было проведено систематическое исследование стабильности 60 германиевых термометров при циклическом изменении  [c.239]

Испытания на усталость по Велеру и на повреждаемость по Френчу проводят при стабильных по времени и непрерывно действующих циклических нагрузках. Этот вид нагружения свойствен лишь некоторым машинам, работающим непрерывно и на постоянном режиме (стационарные силовые двигатели, электрогенераторы, мащины, встроенные в автоматические линии непрерывного действия). Большинство же машин работает на переменных режимах с правильно или неправильно чередующимися цикла.ми и различным уровнем напряжений в циклах (транспортные, строительные и т. д.).  [c.306]

В инженерных расчетах на прочность, при анализе причин и характера разрушения объектов сложных технических систем традиционно рассматриваются дефекты, имеющие металлургическую природу (раковина, усадочные трещины) или технологическое происхождение (сварочные, закалочные, ковочные трещины), а также дефекты (особенно опасны трещиноподобные дефекты), которые могут появиться или развиваться в результате длительной эксплуатации аппарата. Доказано, что под воздействием коррозионно-активной среды, циклического нагружения и других факторов дефекты могут увеличиваться в размерах и тогда их развитие переходит из стадии стабильного (контролируемого) в стадию спонтанного разрушения. Поэтому неслучайно, что в практике эксплуатации сварных конструкций отмечаются случаи их преждевременного разрушения.  [c.111]

Параметры критической длины усталостной трещины и зоны долома используются в настоящее время для оценки циклической вязкости разрушения К(с. Характеристики вязкости разрушения при циклическом нагружении для циклически разупрочняющихся сталей существенно ниже, чем характеристики статической вязкости разрушения. Для циклически стабильных и циклически упрочняющихся металлических материалов существенного различия между этими характеристиками нет. Основные типы усталостных изломов в зависимости от вида нагружения представлены в табл. 1.  [c.66]

Многочисленными исследованиями установлено, что при испытании на малоцикловую усталость материалы ведут себя различно. Одни из них упрочняются, другие — разупрочняются, третьи оказываются стабильными к малоцикловому нагружению, т. е. при циклическом упругопластическом деформировании петля гистерезиса остается практически неизменной. Непостоянство геометрии петли гистерезиса в процессе циклического деформирования приводит к изменению формы диаграммы деформирования с ростом числа полуциклов нагружения.  [c.366]

Наконец, в случае циклически стабильных материалов (например, среднеуглеродистые и аустенитные стали) ширина петли упру-го-пластического гистерезиса практически не зависит от числа циклов деформирования. При различной ширине петель в четных и нечетных полуциклах происходит одностороннее накопление деформации. Для таких материалов, стабилизирующихся при определенном числе полуциклов k = k, ширина петли определяется по формуле (22.29) при k = k.  [c.686]

Заметим, однако, что деление материалов на циклически упрочняющиеся, стабильные и разупрочняющиеся носит несколько условный характер, так как поведение определенного материала при циклическом деформировании зависит от температуры, его исходного состояния (наклеп, термообработка) и других факторов. Например, наклеп — предварительное пластическое деформирование при комнатной температуре — ведет к циклическому разупрочнению. То же имеет место и при закалке. Так что в нестабильном состоянии материал циклически разупрочняется. В то же время в стабильном состоянии (отжиг) наблюдается циклическое упрочнение.  [c.686]

Если одна из величин а или р мала (т. е. функция Fi(k) слабо зависит от числа полуциклов k), то это характеризует циклическую стабильность металла. При низких значениях аир распределение напряжений и деформаций при повторном нагружении элементов конструкций получается устойчивым. Следствием циклической нестабильности является перераспределение напряжений по мере увеличения числа циклов нагружения.  [c.77]


Стабильное распространение усталостной трещины происходит до тех пор, пока выполняется условие постоянства плотности энергии деформации, что в соответствии с теорией Си реализуется до тех пор, пока не реализовано предельное состояние — вязкость разрушения материала, т. е. когда выполняется условие Kj = Ki - Такая ситуация реализуется в процессе распространения усталостных трещин в условиях постоянства деформации. Однако даже в этом случае предельное состояние соответствует циклической, а не статической вязкости разрушения материала.  [c.197]

Поддержание устойчивости прироста усталостной трещины в цикле нагружения, что отражается в сохранении постоянства величины шага усталостных бороздок, связано с высокой стабильностью системы. Даже неравномерность распределения энергии вдоль фронта распространяющейся трещины не оказывает существенного влияния на величину прироста трещины в цикле нагружения. Бо.дее того, имеет место ситуация, когда на возрастающей длине трещины происходит дискретный переход на меньший уровень шага усталостных бороздок. Фактически у кончика трещины происходит резкое снижение темпа формирования свободной поверхности в локальном объеме материала, если в соседних объемах произошло резкое проскальзывание трещины, и часть всей сообщенной материалу энергии циклического нагружения перераспределилась по зонам или участкам вдоль фронта трещины. Формирование фронта усталостной трещины имеет волнообразный характер. Это волновой процесс нарастания и убывания величин скачков трещины, когда наиболее типичной ситуацией является поддержание темпа прироста усталостной трещины в локальном объеме материала на одном уровне с нулевым ускорением.  [c.211]

На рис. 32 приведены примеры изменения размаха напряжений по числу циклов, при этом выбраны три наиболее характерных вида зависимостей. На рис. 32,а наблюдается стабилизация процеоса изменения размаха напряжений с. первых циклов нагружения. Уменьшение значений Ли, т. е. процесс разуирочнения, происходит лишь при больших значениях числа циклов (Л >10 ). Материалы, имеющие такой характер изменения напряжений по числу циклов, называют циклически стабильными. При однократном изменении характера процеоса (рис. 32,6) упрочнение (возрастание. Аа) сменяется разуирочнением во второй половине срока службы. В анализе изотермического малоциклового нагружения этот случай не рассматривают, материалы классифицируют лишь как циклически стабильные, циклически упрочняющиеся и разупрочняющие. Смена процессов упрочнения и разупрочнения может быть и неоднократной (рис. 32,в). Уменьшение Аа в случаях, показанных на рис. 32,а и можно объяснить появлением трещин и уменьшением жесткости образца, но зависимость на рис. 32,в (уменьшение Аи сменяется увеличением размаха наиряжений) иодтверждает особенности термоциклического неизотермического нагружения и его влия-  [c.55]

Рассмотрим усталостное разрушение зерна поликристалли-ческого ОЦК металла. При периодическом нагружении процесс усталостного разрушения зерна можно подразделить на три стадии 1) зарождение микротрещин по границам и в теле фрагментированной (или ячеистой) дислокационной структуры, возникающей в процессе циклического деформирования 2) стабильный рост микротрещин за счет эмиссии дислокаций из их вершин 3) образование разрушения в масштабе зерна при нестабильном росте микротрещин.  [c.137]

Процесс малоциклового усталостщ)го разрушения ОЦК металлов может быть подразделен на три этапа множественное зарождение микротрещин на самых ранних стадиях циклического упругопластического деформирования, стабильное подрастание микротрещин за счет эмиссии и стока дислокаций в их вершины и, наконец, нестабильное развитие микротрещин до ближайших эффективных барьеров, которыми могут являться микронапряжения или границы деформационной субструктуры. Исходя из указанной схематизации усталостного разрушения ясно, что долговечность до зарождения макроразрушения определяется двумя параметрами НДС неупругой деформацией (точнее, размахом неупругой деформации в цикле) и максимальными напряжениями в цикле. Первый параметр определяет скорость стабильного роста микротрещины, а второй — ее критическую длину.  [c.148]

В соответствии с принятым предположением о циклической стабильности материала НДС в конце второго полуцикла нагружения соответствует НДС в конце нулевого. Это обстоятельство позволяет считать величины еР. и е . параметрами, характеризующими упругое и пластическое деформиров ие материала за цикл, т. е. принять Aef = ef и Де = е , где Aef и Aef = интенсивность размаха пластической и упругой деформации соответственно.  [c.211]

ОНС, реализующегося у вершины трещины, и ет ряд отличительных особенностей от случаев одноосного н 1и плоского напряженного состояния. В частности, оказывается, что для циклически стабильного материала размахн пластической и упругой деформации в цикле зависят не только от раэмада нагрузки, но и от ее максимального значения.  [c.265]

Нет причин полагать, что стабильность сопротивления германия р- или п-типа является одним из факторов, ограничивающих воспроизводимость результатов, получаемых с германиевыми термометрами сопротивления. Небольшие случайные скачки сопротивления, которые иногда наблюдаются при циклическом изменении температуры, возникают скорее всего на спаях между золотыми выводами и германием. В этих спаях сосредо-  [c.238]

При мягком нагружении циклически разупрочняющихся или стабильных металлов накапливаются пластические деформации, которые могут привести к двум типам разрушения — квазистати-ческому и усталостному. Квазистатнческое связано с возрастанием остаточных деформаций до уровня, соответствующего разрушению при однократном статическом нагружении. Разрушение усталостного характера связано с накоплением повреждений, образованием прогрессируюш,их трещин при существенно меньшей пластической деформации. Возможны и промежуточные формы разрушения, когда образуются трещины усталости на фоне заметных пластических деформаций.  [c.623]


Стали типа 15Х5М относятся к числу термически стабильных. Однако при длительном воздействии высокой температуры в сварных разнородных соединениях могут образовываться переходные прослойки, обусловленные диффузионно м перераспределением в них диффузионно-подвижных Э1 с,ментов. Исследования, проведенные Н.М. Королевым во ВНИИнефтемаше, показали, что интенсификацию диффузионных процессов вызывают циклические термические напряжения, обусловленные различием температурных коэффици-ешов линейного расширения аустенитного шва и основного металла. Помимо термических напряжений действуют также напряжения, возникающие вследствие наличия закаленных участков в околошовных зонах. Мартенситная пересыщенная структура закалки всегда обладает более высокой свободной энергией, чем равновесные фазы с таким же номинальным составом, т.е. околошовные зоны термического влияния закаливающейся стали характеризуются более структурнонапряженным состоянием. Как известно, напряженное состояние металла значительно влияет на скорость диффузионных процессов и их коррозионную стойкость.  [c.155]

По воздействию малоцикловых нагрузок при нормальной температуре материалы могут быть разбиты на три группы упрочняющиеся, стабильные и циклически разу-прочняющиеся.  [c.388]

Склонность к циклическому разупрочнению свойственна сталям в метастабильном, в частности, низкоотпу-щенном после закалки или наклепанном (нагартованном) состояниях при Ев = к (Vb 0,54vi/k, т.е. малая протяженность стадии деформационного упрочнения). Наконец, циклически стабильные материалы характеризуются соотношением уа 0,5v[/k. При больших нагрузках, сокращающих долговечность до 10 циклов, практически все материалы ведут себя как разупрочняющиеся.  [c.388]

Испытания проводили путем циклического нагружения минерализованной водой в диапазонах давления 50-80, 80-100, 100-125, 50-125, 50-150, 175, 200, 225 атм с выдержкой 5 мин при стабильной нагрузке. Разрушение произощло при давлении 250 атм в виде развития трещин, зародившихся в зоне сварки и распространившихся по участку скопления несплошностей.  [c.192]

Роль статического повреждения существенна при мягком нагружении для циклически разупрочняющихся сталей. На рис. 5.8 сопоставлены экспериментальные данные с кривыми малоцикловой усталости, вычисленными по выражению (5.9)—кривые 1— и по выражению (5.10) —кривые 2 — применительно к минимальным значениям 1 з и Ов низколегированной стали типа Сг— Мо—V (разупрочняющейся) и стали 22К (стабильной) для случая жесткого нагружения. Кривые 3 построены по экспериментальным данным для мягкого нагружения. Верхнее семейство кривых / относится к стали Сг— Мо—V, нижнее семейство кривых II — к малоуглеродистой стали 22К, при1 ем кружками отмечено жесткое нагружение, а крестиками — мягкое. Как следует из дан-86  [c.86]

По данным испытаний лабораторных образцов, корпусная сталь при температуре в диапазоне от 20 до 150°С является циклически стабильной, показатель упрочнения стали в упругоциклической области при статическом нагружении равен 0,18, а при циклическом — 0,29 и слабо зависит от температуры.  [c.100]

В терморезисторах с различными по величине и знаку температурными коэффициентами сопротивления используются циклические по-линитрйлы и другие полупроводники многие типы терморезисторов могут применяться при температурах до 600° С. Варисторы из фталоциани-на меди отличаются высокой температурной стабильностью.  [c.213]

Циклическая водная очистка топочных экранов от золовых отложений, как правило, обеспечивает высокое тепловосприятие топки и его стабильность. С точки зрения влияния золовых отложений на теплообмен их можно разделить на отложения, которые остаются на экранных трубах после цикла очистки и отложения, образующиеся на промежутке между двумя циклами очистки. Очевидно, что эффективность очистки, главным образом, определена тепловым сопротивлением оставшихся после цикла очистки на повер5сности нагрева отложений. Поэтому при оценке действия очистки первостепенное значение имеет уровень и характер изменения тепловой эффективности топочных экранов непосредственно после завершения цикла очистки.  [c.221]

Изменение амплитуды напряжений при жестком нагружении, как и изменение амплитуды деформаций при мягком нагружении, в процессе циклических испытаний определяется свойствами материала. Для одних материалов (алюминиевые сплавы, титан и низкопрочные а-сплавы на его основе, некоторые конструкционные стали) ширина петли гистерезиса при мягком деформировании по мере нара--стания количества циклов уменьшается, а амплитуда напряжений при жестком нагружении увеличивается. Для этой группы материалов характерно повышение предела пропорциональности с увеличением количества циклов нагружения, в связи с чем такие материалы относят к группе циклически упрочняющихся. Для других материалов (например, теплостойкие стали, чугуны, высокопрочные титановые а и (а+ 0)-сплавы) наблюдается обратная картина при мягком нагружении ширина петли гистерезиса увеличивается, а при жестком нагружении амплитуда напряжения снижается. Сопротивление деформированию для этой группы материа-пов с увеличением количества циклов уменьшается, а вся группа материалов относится к типу циклически разупрочняющихся. И, наконец, ряд материалов (аустенитные стали, конструкционные стали средней прочности, некоторые титановые сплавы) не изменяют сопротивления деформированию при цикпическом нагружении, форма диаграмм деформирования остается практически неизменной, а сами материалы относятся к циклически стабильным. На рис. 47 приведен характер изменения диаграмм при жестком и мягком нагружении описанных групп материалов.  [c.87]

Характер изменения амплитуды напряжений во II периоде зависит не только от уровня прочности сплава, но и от его структурного состояния. У сплава ВТ5-1, ВТ6С в мелко- и крупнозернистом состоянии во II периоде наблюдается стабильное уменьшение амплитуды напряжений. Для сплава ПТ-ЗВ в мелкозернистом состоянии во II периоде характерно небольшое упрочнение, сменяющееся стабилизацией амплитуды напряжений. В крупнозернистом состоянии у сплава ПТ-ЗВ II период отличается практической неизменностью амплитуды напряжений (циклически стабильный материал). У сплава ОТ-4У во II периоде наблюдается резко выраженное увеличение амплитуды напряжений (циклически упрочняющийся материал). Аналогичный характер изменения амплитуды напряжений во II периоде наблюдается и у других низкопрочных титановых сплавов (ВТ1, ПТ-7М и др.). Период III, как указано выше, связан с развитием магистральной трещины, и продолжительность его составляет около 0,1 —0,15 от общей долговечности до разрушения. Для оценки несущей способности образца наибольший интерес представляет суммарная долговечность в I и II периодах, т.е. долговечность до появления магистральной трещины.  [c.91]

Переход от жесткого к мягкому режиму нагружения вносит изменения в характер деформирования материала. При мягком нагружении, как и при >)<естком, изменение характера деформирования можно разбить на три периода. В первом периоде протяженностью от единиц до нескольких десятков циклов происходит некоторое увеличение ширины петли пластической деформации, во втором периоде для циклически разупрочняющихся материалов ее размах непрерывно возрастает. Для циклически упрочняющихся материалов ширина петли сокращается, а для циклически стабильных материалов она постоянна. В третьем периоде для всех материалов характерно увеличение ширины петли пластической деформации. Несущая способность определяется в основном длительностью первого и второго периодов, которые занимают более 0,9 от общей долговечности.  [c.94]


При аналитическом построении циклических диаграмм допускается пренебрегать изменением модуля упругости и нелинейностью модулей нагрузки и разгрузки [45]. При аппроксимации циклической диаграммы, как и в случае большинства других предложений по аналитическому построению циклических диаграмм, исходят из предположения о подобии исходной и циклической диаграмм при различных температурах. Это позволяет свести задачу к изотермической и деформации в циклах неизотермического нагружения определять по диаграммам, полученным для изотермических условий. Здесь используется, как и в условии (1.5), представление о независимости поведения материала от способа подвода энергии в процессе упругого и пластического деформирования. Принимаемые при расчетах упрощающие гипотезы дают модель циклически стабильного материала, что считается оправданным, поскольку на практике изготовление дисков из циклически разуп-рочняющихся материалов не допускается, а по отношению к упрочняющимся материалам эти упрощения должны идти в запас прочности.  [c.40]

Универсальная гидрорезонансная усталостная машина марки ЦЛУ-30 предназначена для проведения испытаний конструкционных элементов и образцов материала на статическое или циклическое растяжение-сжатие, изгиб или кручение в условиях стабильного или программного нагружения [120]. Силовозбуждение машины — гидрорезоиансное, с роторным пульсатором, с автоматическим программным управлеиием. Машина работает с частотой от 4 до 3400 цикл/мин. При динамических нагрузках высокочастотных 0,2 Мн ( 20 тс) и низкочастотных 0,3 Мн ( 30 тс) амплитуда перемещений составляет 30 мм. Расстояние между захватами 0—2000 мм, между опорами при изгибе 100—1000 мм. Угол закручивания образца 0—18, крутящий момент 10—7200 Н-м (1— 720 кгс-м).  [c.192]


Смотреть страницы где упоминается термин Стабильность циклическая : [c.45]    [c.4]    [c.379]    [c.17]    [c.239]    [c.390]    [c.58]    [c.78]    [c.198]    [c.88]    [c.88]    [c.16]   
Сопротивление материалов усталостному и хрупкому разрушению (1975) -- [ c.77 , c.83 ]



ПОИСК



Композиты с металлической матрицей циклическая стабильность

Материалы циклические разулрочняющиеся стабильные

Стабильность

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте