Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения физические в теории упругост

Система уравнений (5.27) является синтезом статического, геометрического и физического анализов задачи. Уравнения (5.27) отличаются от уравнений Ламе в теории упругости наличием дополнительных членов, расположенных в правой части.  [c.140]

Отыскание деформаций и перемещений связано с рассмотрением физических и геометрических уравнений плоской задачи теории упругости, что в свою очередь приводит к необходимости интегрирования дифференциальных уравнений в частных производных, а это лишает решение того однообразия и четкости, которые свойственны определению напряженного состояния в первой основной задаче.  [c.107]


Теория течения отличается от теории упругости и теории упруго-пластических деформаций физическими уравнениями. В теории упруго-пластических деформаций устанавливается, как мы видели, определенная связь между деформациями и напряжениями, связь, подобная закону Гука (уравнения (10.36), (10.37)). В теории течения физические уравнения устанавливают связи между компонентами скоростей деформаций и компонентами напряжений (10.46).  [c.293]

Как и в теории упругости, математический аппарат теории пластичности состоит из трех групп уравнений. Это уравнения теории напряжений, теории деформаций и физические уравнения. Уравнения первых двух групп совпадают с соответствующими уравнениями теории упругости.  [c.219]

Как было отмечено, отличия в двух теориях пластичности заключаются в физических законах. Что касается двух других групп основных соотношений механики — уравнений равновесия и соотношений Коши, то они справедливы в обеих теориях пластичности и имеют тот же вид, что и в теории упругости (гл. 4 и 5).  [c.502]

В теории упругости компоненты девиаторов напряжений и деформаций связаны уравнениями (6.14). По аналогии с этими соотношениями запишем физические соотношения теории пластичности  [c.505]

Равенства (22.41) no своей сути существенно отличаются от уравнений закона Гука тем, что содержат не постоянные упругости материала, а переменные параметры и v , которые в свою очередь зависят от секущего модуля Е . Поскольку секущий модуль зависит от напряжений и деформаций в данной точке тела (рис. 22.7), то Е и v являются функциями координат, и, таким образом, равенства (22.41) как бы являются физическими соотношениями теории упругости для неоднородного тела. Задача дополнительно осложняется тем, что законы изменения У, z) и Vn(x, у, z) могут быть найдены лишь  [c.515]

Условия стационарности полного функционала можно разделить на группы в соответствии с двумя раз личными схемами классификации а) по физическому смыслу уравнений — геометрические, статические, физические б) по геометрическому расположению — уравнения в области и граничные условия. Эти группы могут быть разбиты на еще более мелкие подгруппы, если рассмотреть компоненты векторных уравнений. В качестве дополнительных условий могут быть приняты различные комбинации из этих групп и подгрупп (здесь должна быть использована теоретико-множественная операция объединения множеств уравнений). Число таких комбинаций для большинства полных функционалов в теории упругости и оболочек велико. В гл. 3, 4 будут рассмотрены только некоторые, наиболее интересные из них.  [c.39]

Из уравнений (2.28) и (2.33) очевиден физический смысл множителей Лагранжа а , Оу,. .., ixy, рх, Ру Pz- Ясно, что условия стационарности функционала III совпадают с уравнениями краевой задачи теории упругости, сформулированной в 1.1. Если (2.29) и (2.32) считаются дополнительными условиями, которые удовлетворяются тождественно, то III сводится к П, определяемому по формуле (2.12).  [c.56]

В настоящее время существуют две теории пластичности. Их различие заключается в конкретной записи физических соотношений. Что же касается двух других основных соотношений механики сплошной среды - уравнений равновесия (10.1), (10.2), и соотношений, устанавливающих взаимосвязь между перемещениями и деформациями (10.16), то они идентичны в обеих теориях пластичности и имеют тот же вид, что и в теории упругости.  [c.209]


Общая постановка плоских контактных задач для полупространства и слоя, подверженных одновременному воздействию сил тяжести и однородных, ориентированных вдоль границы, начальных напряжений дана в работе В. М. Александрова и Н. X. Арутюняна [1]. Предполагалось, что материал среды является несжимаемым и описывается либо уравнениями физически нелинейной (геометрически линейной) теории установившейся ползучести, либо уравнениями геометрически нелинейной (физически линейной) теории упругости. В предположении, что силы трения в области контакта отсутствуют, изучена проблема эллиптичности линеаризованных уравнений (внутренней устойчивости среды), исследованы явления поверхностной неустойчивости среды. В качестве иллюстрации проведен анализ влияния механических свойств и начального напряженного состояния среды на контактную жесткость. Для потенциала Муни обнаружены значения начальных напряжений, при которых упругий континуум начинает работать как основание Винклера.  [c.236]

Для описания встречающихся в теории упругости векторных и тензорных величин будут параллельно применяться обычная в технической механике форма записи, а также тензорная форма записи, в которой уравнения имеют компактный вид. Но при этом будем ограничиваться тензорами в декартовых координатах, а общее описание в произвольных криволинейных координатах с помощью тензорного исчисления использоваться не будет. Там, где это представляется необходимым, будут применяться цилиндрические и сферические координаты, а иногда отдельные уравнения будут формулироваться в так называемой векторной форме записи (которая во многих разделах механики сплошной среды сегодня является обычной). Физическое содержание теории всегда будет ставиться на передний план и не затемняться математическим формализмом.  [c.10]

Неоднозначность решений уравнения колебаний. Когда граничная задача математической физики относится к области, содержащей бесконечно удаленную точку, необходимо особо рассмотреть вопрос О поведении решения на бесконечности исследовать асимптотический характер решения в зависимости от пространственных координат. В условиях задачи обычно нет непосредственных указаний относительно этого характера, и он должен быть определен из косвенных соображений в соответствии с физическим содержанием вопроса, причем забота о том, чтобы принятый на бесконечности характер решения обеспечивал единственность искомого решения, является важнейшей. Ясно, что условие, обеспечивающее единственность, само, вообще говоря, не является единственным, и задача состоит в выборе этого условия наиболее целесообразным образом, и прежде всего так, чтобы решения с заданным характером на бесконечности существовали. Формулы Грина и им подобные, в частности в теории упругости формулы Бетти, служат средством, позволяющим делать этот, выбор однако после того, как из физических соображений или на основании указаний, которые черпаются из формул Грина, мы остановились на том или ином асимптотическом характере решения, необходимо доказать, что такое решение действительно существует и является единственным. Подобный выбор асимптотического характера решения граничных задач для уравнения мембраны (скалярное уравнение колебаний), основанный на применении формулы Грина, был сделан впервые в 1898 г. А. Зоммерфельдом и вошел в литературу под названием условия излучения-, доказательство суи<е-ствования и единственности решений основных граничных задач колебаний, удовлетворяющих условию излучения Зоммерфельда, было дано автором в 1933—1934 гг. [136, в, д].  [c.58]

Таким образом, в теории упругости можно говорить о нелинейностях двух типов — геометрической и физической. Их можно считать не связанными друг с другом, поскольку, как это неоднократно подчеркивалось в главе I, малость удлинений и сдвигов не влечет за собою малости углов поворота и наоборот. Поэтому может оказаться, что, несмотря на достаточную малость удлинений и сдвигов, линеаризировать уравнения равновесия и формулы для компонентов деформации будет нельзя ввиду значительности углов поворота. Может также оказаться, что несмотря на достаточную малость, по сравнению с единицей, удлинений, сдвигов и углов поворота будет возможна только линеаризация формул для деформаций и уравнений равновесия и нельзя будет линеаризировать соотношения между напряжениями и деформациями, так как деформации превосходят предел пропорциональности.  [c.156]

Большой интерес представляет также задача о свободно опертой пластине, в которой одно краевое условие главное, а другое естественное. Как и в задаче для уравнения Пуассона с косой производной, вид естественного краевого условия будет зависеть от вида вариационного интеграла l v). В теории упругости естественное краевое условие включает коэффициент Пуассона V, определяющий изменение ширины при растяжении материала в длину обычно выбирают v = 0,3. Краевые условия, определяемые физическими соображениями, таковы  [c.89]

Мы будем употреблять выражения тело с разрезом и тело с трещиной , понимая при этом, что разрез переходит в трещину только тогда, когда применяется некоторое дополнительное условие разрушения, вытекающее из физических соображений и не вытекающее из классических уравнений равновесия и движения теории упругости.  [c.11]


Выпишем еще раз в сокращенной форме основные уравнения теории упругости, а именно I — статические, II — геометрические и III — физические  [c.43]

В предыдущей главе были получены основные дифференциальные уравнения, описывающие поведение упругих сред при деформировании, а также найдены выражения для краевых значений вектора напряжений посредством компонент тензора напряжений или смещений. Для рещения конкретных физических задач необходимо теперь перейти к корректной математической постановке краевых и начальных задач теории упругости.  [c.242]

Остановимся вкратце на случае, когда среда несжимаема (о = 0,5). Будем рассматривать этот вопрос только с позиций интегральных уравнений. Дело здесь усложняется тем, что значение а = 0,5 является вырожденным для дифференциальных уравнений. Интегральные уравнения теории упругости для несжимаемой среды совпадают (с точностью до физического смысла) с уравнениями линеаризованного течения вязкой жидкости [230]. Эти уравнения являются регулярными, и в дополнение к полюсу резольвенты в точке к = —1 возникает еще полюс в точке Я. = 1. Это обстоятельство очевидно, поскольку для несжимаемой среды постановка задачи 1+ возможна лишь при условии  [c.565]

Следовательно, уравнений статики недостаточно и задача теории упругости по определению напряжений в бесконечно малом является статически неопределимой. Недостающие уравнения можно получить, изучая деформации тела и учитывая его физические свойства.  [c.17]

Таким образом, все точки прямолинейной границы имеют постоянное перемещение, направленное в сторону начала координат. Мы можем считать такое перемещение физически возможным, если припомним, что вокруг точки приложения силы Р мы мысленно удалили часть материала, ограниченную цилиндрической поверхностью малого радиуса (рис. 53), в пределах которой уравнения теории упругости теряют силы. В действительности, конечно, произойдет пластическая деформация этого материала в силу этого можно допустить существование вдоль прямолинейной границы перемещений, определяемых формулами (70). Вертикальные перемещения на прямолинейной границе получаются из второго выражения (ж). Учитывая, что перемещение v считается положительным, если оно направлено в сторону увеличения 0, и что деформация симметрична относительно оси х, найдем вертикальные перемещения, направленные вниз, на расстоянии гот начала координат в виде  [c.118]

Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

Наряду с теоремой, указанной в названии параграфа, имеется еще и теорема о существовании решения задачи теории упругости. Доказательство этой последней теоремы является далеко не простым в математическом отношении. Вместе с тем, если исходить из физических соображений, то факт существования решения задачи теории упругости является достаточно очевидным. Все уравнения теории упругости, приведенные выше, получены из принципов механики, не вызывающих сомнения, вследствие чего они, эти уравнения, не могут быть в противоречии с природой — сплошное тело (сохраняющее свою сплошность) определенным образом нагруженное и надлежащим способом закрепленное, должно иметь хотя бы одно положение равновесия. Поскольку теорема о существовании решения задачи теории упругости (в том числе и нелинейной), представляя большую математическую сложность, с точки зрения механики не вызывает сомнения в смысле ее справедливости, на доказательстве этой теоремы мы не останавливаемся и будем исходить из предположения о существовании решения отмеченной выше задачи. Что касается теоремы о единственности решения линейной задачи теории упругости, то ее ниже докажем.  [c.624]

Различными типами анизотропии обладают и многие искусственные, в частности, некоторые композитные материалы. Напряженно-деформированное состояние в них определяется на основе теории упругости анизотропного тела, в которой физические уравнения (уравнения закона Гука) содержат матрицу жесткости или податливости, соответствующую типу анизотропности тела. К числу анизотропных материалов относятся фанера, древеснослоистые пластики, стекловолокнистые материалы и др.  [c.480]

Схема вывода таких разрешающих уравнений, являющихся аналогом уравнений Ламе в теории упругости, следующая в уравнения равновесия (127), справедливые для оболочки, выполненной из материала с любыми физическими свойствами, вместо усилий-Ых, N2, 5 и моментов Мх, Мг и Я подставляются их выражения через параметры деформации согласно физическим уравнениям (137). В результате такой подстановки получаются три уравнения равновесия оболочки, выполненной из материала, подчиняющегося закону Гука. Далее в полученные уравншия вместо параметров деформации 6, , е , ю, Хг и т подставляются их выражения через перемещения г и ш согласно уравнениям (106)., имеющим чисто геометрический характер. Использование уравнений (106) гарантирует удовлетворение условиям совместности деформаций в срединном слое.  [c.111]

В настоящей книге в соответствии с ее названием Приложение методов теории упругости и пластичности к решеник> инженерных задач авторы пытались в небольшом объеме привести основные сведения об исходных уравнениях и соотношениях теорий упругости и прикладной теории пластичности, сосредоточить основное внимание на рассмотрении их физического, геометрического или статического смысла, представить запись отдельных методов решения этих уравнений с помощьк> теории матриц, разобрать отдельные методы решения задач с ориентацией на привлечение быстродействующих цифровых машин и охарактеризовать результаты решения некоторых сложных, но практически интересных задач. Этот краткий курс имеет целью в наиболее доступной форме ознакомить читателя с основными принципами, методами и некоторыми задачами теории упругости и прикладной теории пластичности и подготовить его к самостоятельному изучению полных курсов и специальных исследований в отмеченных областях.  [c.4]

Различие между этими разделами механики состоит, во-первых, в рассматриваемых объектах (так, например, в курсе сопротивления материалов рассматривается главным образом брус, в теории упругости помимо бруса изучаются нанряжеиное и деформированное состояния пластин, оболочек, массива, а в строительной механике объектами изучения являются системы, состоящие из стержней (фермы), балок (рамы), пластин и оболочек) во-вторых, в принимаемых допущениях (теории упругости, пластичности и ползучести отличаются друг от друга тем, что в них принимаются различные физические законы, устанавливающие связь между напряжениями и деформациями, но не вводится каких-либо деформационных гипотез, а в сопротивлении материалов физический закон тот же, что и в теории упругости (закон Гука), но, кроме того, принимается дополнительно ряд допущений — гипотеза плоских сечений, ненадавлпвания волокон и т. д.) в-третьих, в методах, используемых для решения задач (в теории упругости приходится решать существенно более слопшые уравнения, чем в сопротивлении материалов, и для их решения приходится прибегать к более сложным математическим методам).  [c.7]


Если же речь идет о твердом теле с закрепленной осью, то относительно реакций, возникающих в закрепленных точках оси, основные уравнения равновесия утверждают только то, что их результирующая сила и результирующий момент (относительно данной точки) должны быть равны и прямо противоположны результирующей силе и результирующему моменту активных сил, но не дают возможности определить эти реакции в отдельных закрепленных точках оси. Таким образом, основные уравнения равновесия приводят к заключению, что в статических условиях действие связей можно зайенить какой угодно из систем реакций (эквивалентных между собой), приложенных в закрепленных точках и имеющих результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил. Такое заключение, очевидно, неудовлетворительно, так как с физической точки, зрения бесспорно, что при равновесии реакции всегда определяются однозначно. Мы приходим, таким образом, к новому случаю статической неопределенности, который можно сравнить со случаем, уже встречавшимся в п, 10 гл. IX эта неопределенность происходит от того, что в принципах статики твердого тела не принимаются во внимание деформации, вызываемые силами. Это вполне допустимо в первом приближении, так как деформации вообще бывают незначительными, так что следствия, которые вытекают из этого упрощающего предположения, в достаточной степени соответствуют результатам опыта. Но нельзя претендовать на правильное и детальное отображение всех обстоятельств, связанных с рассматриваемым явлением, если мы намеренно пренебрегаем какими-либо существенными элементами этого явления. Поэтому мы не должны удивляться тому, что относительно реакций Ф мы в состоянии определить лишь свойства, относящиеся к ним в целом (т. е. то, что они имеют результирующую силу и результирующий момент, прямо противоположные результирующей силе и результирующему моменту активных сил F), и не можем указать их распределение в каждой точке. Это достигается в теории упругости, где как раз учитываются указанные выше деформации.  [c.114]

Эти уравнения называются уравнениями Ламе. Они объединяют статические, геометрические и физические предпосылки теории упругости, рассмотренные н предыдущих главах. Действительно, в них содержатся условия разновесин каждого зле.мента тела, геометрические характеристики деформации и, г и., G и физические характеристики материала л и и.  [c.43]

В виброреологии рассматривают реологические свойства тел именно по отношению к медленным воздействиям, в то время как истинные физические свойства остаются неизменными характерной чертой виброреологических констант (модулей упругости, коэффициентов трения, вязкости и т п.) является нх существенная зависимость от характера вибрации (см п. 7). Иногда в таких случаях целесообразно говорить о кажущемся измепенин физических или механических свойств под действием вибраций, хотя следует иметь в виду, что именно эти кажущиеся свойства представляют практический интерес. По-видимому, исторически первыми виброреологическими уравнениями являются уравнения Рейнольдса в теории турбулентности [26]. Этн уравнения приведены в п. 11 таблицы, где и — вектор скорости жидкости р — давление р —  [c.260]

Условия стационарности функционала Ху — Ва-шицу имеют классическую, наиболее употребительную в теории упругости форму геометрические соотношения (1.1), статические уравнения (1.6) и физические уравнения (1.2) в объеме V геометрические (1.5) и статические (1.4) граничные условия на повер.х-ности S.  [c.65]

Решения эТих уравнений аналогичны решениям уравнений (7.3а), которые обсуждались ранее в 7.1. Как уже отмечалось, эти ре пения соответствуют соотношение , имеющим более высокий, чем это требуется в соответствии с физическим смыслом задачи, порядок, но, несмотря на это, нельзя рассчитывать, что с помощью этих решений можно удовлетворить граничным условиям более точным, чем интегральные. Для удовлетворения более полных или точных граничных условий требуется произвести наложение дополнительных полей локальных. напряжений, которые получаются из рассмотрения уравнений трехмерной задачи теории упругости. Методы, рассматривавшиеся в 5.5 для толстых пластин, можно, как уже сцмёчалось ранее, применять, получая прекрасную аппроксимацию для толстостенных цилиндрических и. инйх оболочек, если пренебречь кривизной (как об этом говорилось в 7.1, такой подход особенно удобен при гра-36 .  [c.555]

Уравнение (8.17) вместе с граничными и начальными условиями является основным уравнением пятиконстант-яой теории упругости. Это уравнение нелинейно. Формальными причинами нелинейности являются упомянутая ранее геометрическая нелинейность и нелинейность обобщенного закона Гука (8.16). Последнюю обычно называют физич еской нелинейностью, ибо она связана с нелинейной упругостью конкретного твердого тела. Физическая нелинейность во втором приближении определяется упругими модулями третьего порядка (8.12), Пятиконстантная теория упругости является по существу нелинейной теорией с зачетом величин второго порядка малости. Поэтому естественно вдесь воспользоваться методом малого параметра вектор смещения можно представить в виде  [c.298]

Реологические модели для систем с близкодействием можно разбить на градиентные и безградиентные. В последнем случае в определяющие уравнения производные по х, у, z от Bij Т не входят. Большинство изучающихся в механике моделей являются безградиентными, однако в теории упругости были предложены также некоторые градиентные модели (Э. и Ф. Коссера, Р. Д. Миндлин и Р. А. Тупин за рубежом В. В. Болотин, В. А. Ломакин, В. В. Новожилов и М. Э. Эглит в СССР). В последние годы внимание к градиентным теориям заметно усилилось. По-видимому, это объясняется тем, что физические теории микронеоднородного упругого тела приводят к необходимости учета градиентных членов для некоторых порядков производных.  [c.368]

В 20.2 были получены основные уравнения плоской задачи теории упругости как типичной двумерной задачи, когда все неизвестные функции (их было восемь) зависели от двух аргументов. Эти уравнения делятся на три группы статическую, геометрическую и физическую. При, этом эти уравнения были составлены для бесконечно малого элемента тела сЬсхс , выделенного в направлении изменения двух аргументов, от которых зависят искомые функции.  [c.547]

В этой главе мы рассмотрим класс статически определимых задач теории оболочек. Статическая определимость задачи достигается путем тех или иных допущений о характере распределения сил напряжений в оболочке, при помощи которых сокращается число искомых компонент тензора напряжений и система уравнений для них принимает вид, позволяющий определить все искомые компоненты поля напряжений при помопщ тех или иных физических краевых условий. Краевые условия кинематического характера не рассматриваются, так как заранее неизвестны соотношения, связывающие напряжения с деформацией. Это обычно осуществляется с учетом характера заданного распределения внешней нагрузки, а также на основании специальных геометрических свойств очертания оболочки. Указанный прием широко применяется в теории упругости под названием полуобратного метода Сен-Венана.  [c.154]

Строгая математическая модель деформаций дЛя всей конструкции ЭМУ, состоящей из п тел, в соответствии с теорией упругости представляет совокупность п систем известных уравнений физических (закон Гука) для составляющих напряжений в точке, геометрических (условия совместности) для деформаций в точке от перемещений и статических (уравнения равновесия) для связи напряжений с проекциями объемных сил совместно со взаимосвязанными геометрическими и граничными условиями [3]. При этом предполагается, что нагрузки на элементы конструкции заданы. Это существенно, например, при рассмотрении температурных полей и деформаций и их взаимовлияршя.  [c.120]

Изучению напряжений, деформаций и перемещений в пластически деформируемых телах посвящен раздел механики деформируемого твердого тела, называемый теорией пластичности [10, 12, 13, 18, 36]. Теория пластичиости решает глав1гым обра юм те же задачи, что и линейная теория упругости, но для материалов с другими физическими свойствами. Поэтому между указанными теориями имеется много общего, в частности общими оказываьзтся уравнения равновесия, зависимости между перемещениями и деформациями, уравнения совместности деформаций. Только вместо закона Гука, используемого в линейной теории упругости, в теории пластичности применяются другие физические соотношения.  [c.293]

Гидромеханика (гидравлика) как наука сформировалась в XVIII веке в Российской академии наук работами Д. Бернулли (1700—1782), Л. Эйлера (1707—1783) и М. В. Ломоносова (1711 — 1765). М. В. Ломоносов открыл закон сохранения вещества в движении, который является физической основой уравнений движения жидкости. В своих работах О вольном движении воздуха, в рудниках примеченном , Попытка теории упругой силы воздуха , а также разработкой и изготовлением приборов для измерения скорости и направления ветра М. В. Ломоносов заложил основы гидравлики как прикладной науки. Л. Эйлер составил известные дифференциальные уравнения относительного равновесия и движения жидкости (уравнения Эйлера), а также предложил способы описания движения жидкости. Д. Бернулли получил уравнение запаса удельной энергии в невязкой жидкости при установившемся движении (уравнение Бернулли), являющееся основным в гидравлике.  [c.4]


Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]

В предыдущих главах были рассмотрены статические ус-"яовия (условия равновесия) внутри и на поверхности тела (уравнения (1.16), (1.18)), геометрические уравнения, устанавливающие связь между деформациями и перемещениями (уравнения Коши (1.19)) и между деформациями (условия неразрывности Сен-Венаиа (1.29)), и, наконец, физические уравнения, устанавливающие связь между напряжениями и деформациями в точке тела (обобщенный закон Гука, уравнения (2.8) и (2.10)). Составим сводку основных уравнений теории упругости.  [c.51]


Смотреть страницы где упоминается термин Уравнения физические в теории упругост : [c.272]    [c.138]    [c.11]    [c.134]    [c.6]    [c.74]    [c.576]    [c.2]    [c.236]   
Основы теории упругости и пластичности (1990) -- [ c.37 ]



ПОИСК



Теории Уравнения

Теория упругости

Упругость Теория — см Теория упругости

Уравнение физического

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости

Физические теории

Физические уравнения теории упругости

Физические уравнения теории упругости

Физические уравнения теории упругости для изотропного тела. Обобщенный закон Гука



© 2025 Mash-xxl.info Реклама на сайте