Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другой вид вариационных задач

Другой вид вариационных задач  [c.95]

Метод конечных разностей основывается на замене уравнения Лапласа набором линейных алгебраических уравнений, связывающих друг с другом значения потенциала в узлах расчетной сетки. Эта связь может быть установлена и другим способом. В методе конечных элементов используется расчетная сетка, состоящая из треугольных элементов переменных размеров, покрывающих всю область, для которой необходимо найти решение уравнения в частных производных, -Затем аппроксимируемая вариация потенциала на каждом таком элементе некоторым образом связывается с положением угловых узлов, и строится функционал (интегральная величина, определенная на множестве функций), минимизация которого по значениям потенциала в узлах треугольников эквивалентна решению уравнения в частных производных [122]. Эти два подхода математически эквивалентны, поэтому любая задача, сформулированная в виде уравнения в частных производных, может быть переформулирована в виде вариационной задачи. Конечно-разностная процедура аппроксимирует решение задачи в форме уравнения  [c.154]


Исключение времени из интеграла, рассматриваемого при получении принципа наименьшего действия, должно производиться обязательно при помощи принципа живой силы, а не при помощи принципа площадей или какого-либо другого интегрального уравнения задачи только таким путем можно придти к принципу наименьшего действия. Лагранж в одном месте говорит, что он в Туринском Мемуаре вывел дифференциальные уравнения движения из принципа наименьшего действия в соединении с принципом живых сил. Такой способ выражения после сделанных выше замечаний не допустим. Лагранж применил только что открытое им вариационное исчисление к использованному уже Эйлером принципу наименьшего действия, но употребил при этом принцип живых сил в расширенном виде, приданном  [c.303]

В вариационном исчислении различают классические задачи, имеющие ограничения в форме равенств, и неклассические задачи, ограничения в которых могут быть в виде неравенств и в других формах. В данной книге рассматриваются классические вариационные задачи, с помощью которых формулируются вариационные принципы механики твердого деформируемого тела.  [c.15]

При практической реализации вариационного аппарата в s-методе удобно представлять допустимые функции вне области, ограниченной той или другой присутствующей в задаче границей, — скажем, вне диэлектрика — в виде  [c.187]

Один подход был предложен А. А. Никольским (1950) для линейных задач. Основная его идея распространяется на двухмерные задачи в точной постановке и заключается в следующем. Из концевых точек образующей тела проводятся до точки пересечения отрезки характеристик уравнений газовой динамики. Совокупность этих отрезков называется контрольным контуром. Волновое сопротивление тела, условие непротекания газа через его поверхность, длины проекций образующей тела на оси координат и некоторые другие величины выражаются в виде интегралов через функции на контрольном контуре. В результате плоская и осесимметричная задача оптимизации формы тела сводится к одномерной вариационной задаче для функций на контрольном контуре.  [c.242]

Во-первых, оказывается возможным представить поток нейтронов в трехмерной системе в виде произведения решений для одномерных и двухмерных систем [38]. Во-вторых, может быть сделана попытка представить поток вблизи границ с помощью разложения в ряд по некоторым специально сконструированным функциям или с помощью необычных комбинаций разложений [39]. В-третьих, вблизи скачка температур поток тепловых нейтронов можно представить в виде суммы двух распределений для бесконечной среды, соответствующих более горячей и более холодной областям, а затем определить пространственную зависимость амплитуд двух спектров [40]. Наконец, можно синтезировать решения нестационарных задач, используя различные пространственно-зависимые функции в разные интервалы времени [41]. Эти и другие применения вариационных методов подробно рассматриваются в работе [42].  [c.245]


Вариационные принципы встречаются во многих физических и других задачах, и методы приближенного решения таких задач часто основаны на соответствующих вариационных принципах. Математически вариационный принцип состоит в том, что интеграл от некоторой функции имеет меньшее (или большее) значение для реального состояния системы, чем для любого возможного состояния, допускаемого основными условиями системы. Подынтегральная функция зависит от координат, амплитуд поля и их производных, а интегрирование осуществляется по области, покрываемой координатами системы, среди которых, возможно, есть и время. Задача определения минимума интеграла часто сводится к решению одного или нескольких дифференциальных уравнений с частными производными при соответствующих граничных условиях. Цель нашей книги не в том, чтобы рассматривать приближенные методы решения этих дифференциальных уравнений как способ решения исходных физических задач, сформулированных в виде вариационных принципов. Вместо этого мы намерены описать приближенные методы, которые основаны непосредственно на вариационных принципах.  [c.32]

Большой интерес представляет также задача о свободно опертой пластине, в которой одно краевое условие главное, а другое естественное. Как и в задаче для уравнения Пуассона с косой производной, вид естественного краевого условия будет зависеть от вида вариационного интеграла l v). В теории упругости естественное краевое условие включает коэффициент Пуассона V, определяющий изменение ширины при растяжении материала в длину обычно выбирают v = 0,3. Краевые условия, определяемые физическими соображениями, таковы  [c.89]

С другой стороны, не является необходимым, чтобы принцип наименьшего действия был пригоден во всех мыслимых случаях, которые подчинены закону постоянства энергии. Можно к системе уравнений (4) сделать разнообразные добавления, которые во всяком случае не мешают выводу уравнения (19), но устраняют возможность облечения задачи в вариационную форму. Например, прибавим член вида <р qj к тому из уравнений (4), которое содержит индекс г, и член вида — <р - — к уравнению с индексом /, где  [c.441]

Сравнительно подробно трактованы постановка задачи Сен-Вена-на, теорема о циркуляции, вопрос о центре жесткости, вариационные способы решения, тогда как рассмотрение решений для профилей частного вида сведено к минимуму. В гл. VII применение теории функций комплексного переменного ограничено рассмотрением простейших краевых задач, уделено место применениям других средств решения (преобразование Меллина в задаче о клине, операторные решения задач о полосе и брусе с круговой осью).  [c.12]

Наряду с такими способами решения задач, как вариационный метод, МКЭ, метод конечных разностей, применялись и другие подходы. В работах Е. Р. Мирошниченко [13.3] и Е. С. Кононенко [78] решены задачи о сжатии между жесткими плитами без скольжения цилиндра и параллелепипеда. Решение осуществлялось методом Филоненко — Бородича в функциях напряжений. Вид решения при и — 0,5 и для низких элементов не исследовался. Б. Головня [222] методом динамических релаксаций для уравнений упругости численно определил зависимость эффективного модуля сжатия от фактора формы плоского элемента при разных отношениях С/К. Расчеты показали, что внутри слоя развивается состояние, близкое к гидростатическому, причем чем тоньше слой, тем меньше вклад краевого эф-  [c.15]

Кроме двух указанных, известны и другие приближенные методы решения задач об изгибе и кручении стержней. С одной стороны, имеются разновидности вариационных методов, а с другой стороны, разработан ряд методов, которые нельзя назвать вариационными. К числу последних относятся так называемые методы малого параметра, сущность которых заключается в следующем. Если, например, один размер сечения значительно превышает другой или модули (или коэффициенты упругости aij) значительно отличаются друг от друга, то вводится малый параметр, характеризующий это различие. Неизвестная функция (г]) или Ф) разыскивается в виде ряда, расположенного по степеням малого параметра в процессе решения задачи высшие степени параметра, начиная, например, со второй, отбрасываются, как величины высшего порядка малости.  [c.330]


Другая особенность вариационной задачи Связана с числом моментных уравнений. Если число дополнительных условий, выраженных через моментные функции, ограничено, то плотность вероятности р (х) может принимать множество значений, удовлетворяющих моментным соотношениям. На этом множестве и определен функционал энтропии (2.7), для которого сформулирована вариационная задача. При неограниченном возрастании числа дополнительных условий в нелинейных задачах статистической динамики мощность множества допустимых р (х) сокращается. В пределе бесконечная система моментных уравнений определяет р (х) единственным образом, если выполняются известные условия Карлемана [20]. При этом вариационная задача об условном максимуме функционала энтропии в принципе вырождается, а сам функционал приобретает дельта-образ-ный вид в пространстве р (х). Тем не менее, как будет показано в следующем параграфе, формальное решение вариационной задачи можно выполнить по методу неопределенных множителей Лагранжа. В результате для частных случаев получаются точные аналитические выражения для плотности вероятности р (х).  [c.42]

Действительно. Пусть X представляет собой некоторую функцию координат q,. Эта функция определяет собой семейство поверхностей Xiqi, f ) = , пересекающих искомую траекторию системы, равно как = и другие, бесконечно к ней близкие линии, проведенные через точки Р и Pi (рис. 147). В таком случае каждую из этих кривых можно себе представить заданной своими координатами, выраженными в виде функций от X. Пусть буква б соответствует переходу пз какой-нибудь точки искомой траектории в ту точку соседнего сравнимого пути, которая относится к той же X. В таком случае лю кио (7.21) заменить па вариационную задачу с закрепленными пределами 0, Xi и с закрепленными концами Ро ш Pi  [c.228]

Клебш заметил, что эта система уравнений эквивалентна некоторой вариационной задаче, В более общем виде эта задача была сформулирована независимо друг от друга Херивелом и Линем (см, п, 15).  [c.84]

Легко видеть, что решение одной из этих вариационных задач является также решением другой вариационной задачл. Кроме того, как станет ясно из дальнейшего, из существования решения следует его единственность. Поэтому справедлива следующая альтернатива либо эти задачи имеют одно общее им обеим решение, либо решения не существует вообще. В первом из этих случаев, применив теорему Гаусса — Остроградского, мы получаем, что  [c.145]

Таким образом, общие критерии равновесия термодинамических систем математически формулируются в виде задачи на условный экстремум той или иной характеристической функции. Экстремум ищется при этом в обобщенном пространстве дополнительных внутренних переменных (см. с. 37), а дополнительными условиями является постоянство естественных независимых переменных характеристической функции. Выбор характеристической функции и критерия равновесия связан только с набором термодинамических величин, равновесные значения которых известны и которые могут, следовательно, использоваться в качестве параметров при расчете равновесия, т. е. при нахождении других, неизвестных свойств. С этой точки зрения вариационная запись критерия равновесия также имеет определенные преимущества перед дифференциальной записью, так как не создает ощибочных представлений, что для применения того или иного общего условия типа (11.1) необходимо  [c.110]

Большую популярность за последнее время приобрел в а р и а ц и о н н ы й мет о д В. 3. Власова. В этом методе искомая функция зависит от двух переменных и удовлетворяет дифференциальному уравнению в частных производных (например, прогиб в задаче об изгибе упругой пластинки). Эта функция выражена в виде произведения двух функций, из которых одна представляет заданную функцию от одного переменного, д другая — искомую функцию от другого. Вместо искомых постоянных коэффициентов, рассматриваемых в методе Бубнова — Галеркина (а также в методе Ритца — Тимошенко) и определяемых линейными алгебраическими уравнениями, в вариационном методе Власова, построенном на прямом применении принципа возможных перемещений, рассматривается система искомых функций.  [c.65]

В некоторых задачах (кручение и изгиб авиационных профилей и др.) эффективен своеобразный смешанный метод, разработанный Л. С. Лейбензоном, М. Канторовичем и др Он состоит в том, что искомые функции представляют в виде произведения двух функций, из которых одна известная, причем подбираемая так, чтобы частично удовлетворить граничные условия другая же функция неизвестная, зависящая от меньшего числа переменных, и ее следует определять при помощи вариационного уравнения.  [c.66]

Пример 23.8. Рассмотрим стационарное температурное поле в длинной трубе, поперечное сечение которой показано на рис. 23.10, а. На двух гранях внешней поверхности трубы задано граничное условие первого рода в виде линейиого распределения температуры от О до 200 °С. Поверхности двух других внешних граней и внутреннего цилиндрического отверстия теплоизолированы. Вариационная формулировка задачи может быть получена из (23.25). При отсутствии  [c.248]

Вариационные принципы, являющиеся более общими, нежели раосмотренные в работе [37], были применены к исследованию волновой проблемы Флоке Немат-Насером [51, 52]. Не-мат-Насер разработал вариационные принципы общего вида, в которых независимо варьируются перемещения, напряжения и деформации в одном случае и перемещения и напряжения-— в другом и из которых вытекают все необходимые граничные условия и условия на разрывах. Была подробно исследована задача о распространении волн в направлении, перпендикулярном слоям, и построены дисперсионные кривые. Оказалось, что численные решения очень быстро сходятся к точному рещению.  [c.383]


Любой из распространенных способов применения линейного программирования является целевой функцией в виде суммы дохода, экономии или затрат, решаемой математическим методом, с помощью которого отыскивается такая оптимальная комбинация использования ресурсов, при которой целевая функция достигает наиболее выгодного (максимального или минимального) значения. После того, как найден оптимальный план использования ресурсов — будь то единицы разнообразного оборудования на фанерном заводе, давшие повод Л. В. Канторовичу впервые в мире предложить и обосновать метод [11 ], будь-то маршруты перевозок в транспортной задаче или дефицитные материалы, оптимальное использование которых составляет вопрос народнохозяйственного значения — во всех случаях можно однозначно (детермини-рованно) предсказать материальный и экономический результат оптимального плана, а его осуществление, с другой стороны, не требует никаких дополнительных математических исследований. Примерно так же обстоит дело с методом оптимального управления Л, С. Понтрягина [21 ], когда с помощью вариационного исчисления выбирается оптимальная в заданном отношении программа последовательных изменений материальной системы — будь-то прокатный стан, выполняющий заданную операцию, агрегат на химическом заводе, метеорологическая ракета, самолет при посадке и пр.  [c.8]

Формулировка метода конечных элементов. Основные соотношения МКЭ для задач статики и динамики конструкций могут быть получены как обобщения известных вариационных методов Галеркина, Ритца и других, например коллокации, наименьших квадратов, на пространство кусочно-непрерывных базисных или пробных функций специального вида [47]. Для построения этого пространства исходная расчетная область D (конструкция или ее отдельные элементы) покрывается сеткой, составленной из совокупности М достаточно простых непересекающихся подобластей - конечных элементов Д , связанных между собой в отдель-  [c.104]

Эта задача (без учета внутреннего тепловыделения и вязкой диссипации) была рассмотрена Грэтцем и рядом других авторов [1, 2 . Решение находим в виде ряда по собственным функциям задачи. Несколько первых собственных значений и соответствуго-ш их собственных функций были вычислены с достаточно высокой степенью точности. Если температуру находим в виде разложения по соответствующим ортогональным функциям, то точное решение может быть получено также и с помощью приведенного здесь вариационного метода аналогично тому, как это было сделано в предыдущем разделе. Однако здесь мы получим только приближенное решение, основанное на вариационной формулировке задачи. Из уравнения (6) получаем выражение для функционала / (0), которое в безразмерной форме имеет вид  [c.332]

Равенства (16) и (17) показывают, что при использовании каждого из общих решений Максвелла или Морера условиями стационарности функционала Кастильяно являются различные системы из трех уравнений неразрывности и соответствующих деформационных граничных условий. Из функционала 5к1(ф) (табл. 3.2), в котором используется общее решение (1.7) с шестью функциями напряжений (оно имеет вид Максвелл + Морера ), следует шесть уравнений неразрывности с соо1ветствующими граничными условиями [5.3]. Использование других общих решений приводит к несоответствию между вариационной и дифференциальной формулировками задачи [5.3] этот вопрос нуждается в дальнейшем исследовании.  [c.62]

В настоящее время большое внимание уделяется созданию адекватных моделей нелинейных процессов деформирования, связанных с большими деформациями, неупругим поведением материала и нелинейными динамическими волновыми явлениями в слоистых и композиционных материалах. Построение общих сложных моделей, как правило, сочетается с необходимостью разработки достаточно простых, но в то же время эффективных моделей описания процессов с требуемой точностью, выделением главных или ведущих параметров рассматриваемых процессов деформирования и созданием экономичных программ их численной реализации. При решении задач механики сплошных сред и деформирования элементов конструкций достаточно универсальными и широко распространенными являются метод конечных элементов (МКЭ), метод граничных элементов (МГЭ), вариационно-разностные методы (ВРМ), метод конечных разностей (МКР) в различных вариантах и сочетаниях с другими методами. В основу этих методов положено дискретное представление функций непрерывного аргумента и областей их определения, ориентированное на использование современных ЭВМ с дискретным способом обработки информацш, включая вычислительную технику новой архитектуры с векторными и параллельными процессорами. В механике, в частности в строительной, дискретное представление тел или конструкций в виде набора простых элементов имеет глубокие исторические корни, которые в свое время и послужили отправной точкой развития и обобщений МКЭ.  [c.5]

В математике Эйлер получил выдающиеся результаты по тригонометрии, алгебре, теории чисел, дифференциальному и интегральному исчислениям, теории бесконечных рядов, аналитической геометрии, дифференциальным уравнениям, вариационному исчислению и многим другим разделам этой науки. Он впервые представил тригонометрические величины в виде отношения чисел и установил соотношение е — os0- -isin0. В его книгах, ставших классическими источниками для многих поколений ученых, можно найти как первое изложение основ вариационного исчисления, так и столь занимательные сообщения, как доказательство большой теоремы Ферма при п—З и /г=4. Им была решена знаменитая задача о семи кенигсбергских мостах, проблема топологии — другой области, где он также был пионеров.  [c.558]

Этот метод применяется в случае двух- и трёхразмерных задач. Он состоит в том, что искомые функции представляют в виде произведения двух функций, из которых одна — известная, причём подобранная так, чтобы частично удовлетворить граничным условиям. Другая же функция — неизвестная — должна зависеть от меньщего числа переменных и подлежит определению при помощи вариационного уравнения (16.1). Таким образом, в случае задачи, зависящей от двух переменных, мы получим обыкновенное дифференциальное уравнение для определения неизвестной функции. Метод этот был предложен в 1933 году Л. Канторовичем в применении к кручению прямоугольного контура, В. Дунканом — в применении к кручению равнобедренного треугольника и автором этой книги — в применении к определению центра изгиба сегмента параболы.  [c.444]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]


Задачи кручения и изгиба призматических анизотропных стержней были сформулированы в работах С. Г. Лехницкого (1938, 1942, 1956) результаты этих исследований и решения ряда других задач по теории упругости анизотропных сред суммированы в его монографии (1950). Еще раньше кручение анизотропных призм при помощи обобщенной мембранной аналогии изучал А. Ш. Локшин (1927), рассмотрев сечения в виде круга, эллипса, прямоугольника и параллелограмма. Некоторые задачи об изгибе и кручении анизотропных призм вариационным методом исследовал Л. С. Лейбензон (1940). Приближенному решению задачи о кручении анизотропного стержня авиационного профиля посвящена статья  [c.30]

Одпако при рассмотрении уравнений полей, содержащих, как правило, четыре или большее число независимых переменных х, у, г, I. .., практически невозможно воспользоваться тем, что решение является стационарным значением некоторых интегралов, так как само решепие дифференциальных уравнений в частных производных представляет больпше трудности. В этих случаях использование вариационного принципа дает преимущество лишь при выводе законов сохранения, в частности закона сохранения энергии. Другое дело, если решаются задачи с одной независимой неремеппой (время в механике или длина луча в геометрической оптике). В этом случае имеют дело с обыкновенными дифференциальными уравнениями, и оказывается, что примененне вариационного принципа существенно упрощает исследование решения задачи. Фактически такой подход является непосредственным обобщением обычной геометрической оптики. В своем современном виде оп разработан главным образом Д. Гильбертом, и рассуждения, изложенные выше, базируются на материалах его неопубликованных лекций, прочитанных в Геттингене примерно в 1903 г. Здесь приводится теория лишь для трехмерного пространства х, у, г), однако ее легко обобщить на многомерный случай.  [c.663]

Для математического исследования задач с граничными условиями в виде неравенств (3.5) кроме функциональных пространств, описанных в 4.2, используются рассмотренные здесь теория вариационных неравенств и элементы выпуклого анализа. Приведем ниже основные субдифференциальНые соотношения, необходимые для записи граничных условий вида (3.5) и исследования соответствующих контактных задач с односторонними ограничениями. Более полные сведения по этим и другим математическим вопросам теории задач с односторонними ограничениями в виде неравенств можно найти в [26, 1П, 115, 167, 283, 365, 376, 379, 420 и др.].  [c.92]

Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]


Смотреть страницы где упоминается термин Другой вид вариационных задач : [c.46]    [c.326]    [c.467]    [c.171]    [c.83]    [c.106]    [c.669]    [c.424]   
Смотреть главы в:

Аналитические исследования динамики газа и жидкости  -> Другой вид вариационных задач



ПОИСК



Другая вариационная формулировка бигармонической задачи

Другие задачи

Задача вариационная (задача

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте