Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальное уравнение в частных производных приближенное решение

Хотя программа исследований в классической гидромеханике устанавливается без труда, следовать этой программе — задача чрезвычайно трудная из-за аналитической сложности системы нелинейных дифференциальных уравнений в частных производных второго порядка (7-1.1) и (7-1.2). На практике точные или приближенные решения этой системы можно получить лишь в случае, когда либо граничные условия имеют чрезвычайно простой вид, либо проведены некоторые предварительные упрощения. Фактически в соответствии с типом производимых упрощений задачи гидромеханики можно разделить на ряд категорий. Отнесение какой-либо частной проблемы к одной из этих категорий основывается, по существу, на анализе размерностей.  [c.253]


Если на границе тела заданы напряжения, то определение напряжений во всех точках тела связано с интегрированием гиперболической системы двух нелинейных дифференциальных уравнений в частных производных (IX.11) при известных граничных условиях. Обычно эти уравнения решаются приближенными методами построения полей линий скольжения. Иногда удается построить решение краевой задачи, основываясь только на свойствах линий скольжения.  [c.116]

Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных (10.24). . . (10.28), что представляет собой чрезвычайно сложную задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому решение задачи теории пластичности чаще всего строится с помощью приближенных методов. Одним из них является метод последовательных приближений, предложенный А. А. Ильюшиным и называемый в теории пластичности методом упругих решений. Суть его заключается в рассмотрении последовательности линейных задач теории упругости, решения которых с увеличением порядкового номера сходятся к решению задачи теории пластичности.  [c.310]

Дунаев И. М. Приближенный метод решения в полиномах дифференциальных уравнений в частных производных. Сб. Расчет пространственных конструкций . М., Изд-во литературы по строительству, 1964.  [c.196]

Теоретически определение интенсивности теплоотдачи, а следовательно и коэс х )ициента а, требует знания (см. формулу 4-10) градиента температуры, который устанавливается в среде, омывающей стенку, в месте их непосредственного соприкосновения. В свою очередь знание этого градиента обусловлено решением задачи о всем температурном поле в потоке. Между тем даже в простейшем варианте изотермической теплоотдачи , когда гидродинамическая сторона задачи отделяется от тепловой, точные теоретические решения, требующие интегрирования систем нелинейных дифференциальных уравнений в частных производных, доводятся до конца лишь в немногих случаях. По этой причине исключительно большое практическое применение получили приближенные решения. Прежде всего здесь имеются в виду те, которые основываются на теории пограничного слоя. Напомним, что при турбулентном переносе тепла точные теоретические решения вообще исключаются, поскольку до настоящего времени неизбежен полуэмпирический подход к построению математических основ такого рода переноса.  [c.103]


Все эти уравнения однотипны — они являются дифференциальными уравнениями в частных производных второго порядка. Методика решения подобных уравнений с помощью электроинтеграторов достаточно полно освещена в литературе [I]. Суть этого метода состоит в замене точного дифференциального уравнения приближенным конечно-разностным и воспроизведении полученного уравнения с помощью электрической сетки.  [c.76]

Решение уравнения (3-17) возможно лишь приближенными методами. В [3-1] была предпринята попытка решения дифференциального уравнения в частных производных третьего порядка со смешанными производными методом Галеркина. Были получены первое и второе приближения. Даже для второго приближения формулы оказались чрезвычайно громоздкими и трудными для инженерного применения. Такое обстоятельство заставляет искать другие пути решения системы, описывающей  [c.85]

Трудность получения точного решения задачи устойчивости обусловлена тем, что коэффициенты уравнения (1.13) и (1.14) зависят от С, а вид этих зависимостей определяется для каждой конкретной задачи отдельно. Поэтому решим задачу приближенно с помощью дискретного метода [10], являющегося обобщением известного метода прямых. Следуя ему, решаем задачу в конечно-разностной форме по Сив аналитической по t. Это позволяет заменить каждое из дифференциальных уравнений в частных производных несколькими обыкновенными дифференциальными уравнениями.  [c.40]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Решение гидромеханической задачи находится в приближении теории смазочного слоя в форме, полученной Осборном Рейнольдсом. Область течения задается следующим образом по оси х - [О а], по оси у - [О, Ь], по оси z - [О, h(x, у)]. Математическая модель сводится к дифференциальному уравнению в частных производных эллиптического типа для поля давлений  [c.170]

Для реальных задач построить аналитическое решение зачастую не удается. Даже когда определяющие дифференциальные уравнения в частных производных линейны, область R может оказаться неоднородной, геометрия—нерегулярной, а граничные условия — трудно описываемыми простыми математическими функциями. В таких случаях, используя численные методы, при помощи вычислительных машин можно найти приближенное решение. Численные методы решения краевых задач можно разделить на два отчетливых класса класс, который требует использования аппроксимаций во всей области R, и класс, который требует использования аппроксимаций только на границе С. В первый класс входят методы конечных разностей и конечных элементов, во второй — методы граничных элементов.  [c.10]


Для иллюстрации различий между этими двумя типами вычислительных приемов сопоставим методы граничных элементов с методами конечных элементов. Для простоты представим R двумерной плоской областью, ограниченной контуром С (рис. 1.1). Метод конечных элементов требует, чтобы вся область R была разбита, как показано на рис. 1.1 (а), на сетку элементов. При этом цель состоит в отыскании решения задачи в узлах сетки, решение же между узлами выражается в простой приближенной форме через значения в узлах. Связывая эти приближенные выражения с исходными дифференциальными уравнениями в частных производных, в конечном счете приходим к системе линейных алгебраических уравнений, в которых неизвестные параметры— узловые значения в R — выражаются через известные величины в узлах сетки, находящихся на границе области. Эта система уравнений большая, но разряженная, т. е. хотя она и содержит  [c.10]

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]

Главная особенность дифференциальных уравнений в частных производных с точки зрения их моделирования на АВМ заключается в том, что они имеют более чем одну независимую переменную. Решение уравнений на АВМ находится в функции только одной переменной — времени. Поскольку АВМ предназначена для моделирования обыкновенных дифференциальных уравнений, в основном все методы решения уравнений в частных производных сводятся к их аппроксимации обыкновенными дифференциальными уравнениями с краевыми условиями. Основу этих методов составляет приближенная замена частных производных конечными разностями с помощью разложения в ряд Тэйлора.  [c.94]

Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных, что представляет собой чрезвычайно сложную математическую задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому чаще всего используются приближенные методы. Одним из них является метод последовательных приближений, предложенный Ильюшиным для решения задач теории малых упругопластических деформаций при активном нагружении и называемый в теории  [c.44]

Все эти разложения, будучи оборванными, удовлетворяют уравнению Больцмана с ошибкой (х, е), которая формально имеет порядок Для разложения Гильберта Rn не зависит от 8, но растет алгебраически как в задачах, зависящих от времени (из-за вековых членов). Следовательно, разложение Гильберта является асимптотическим только на ограниченном интервале времени о < / < t. Оценок остаточных членов разложения Чепмена — Энскога в приближениях, следующих за приближением Навье — Стокса, конечно, не существует. Методика, определяемая соотношениями (4.6) — (4.8), дает остаточный член, который убывает при больших t для любого п> поэтому соответствующее разложение превосходит ряд Гильберта по области применимости, а ряд Чепмена — Энскога — по отсутствию лишних решений и приводит к известной системе дифференциальных уравнений в частных производных.  [c.278]

Теоретическая (рациональная) гидродинамика стремится приближенно предсказать движение реальной жидкости путем решения краевых задач для соответствующих систем дифференциальных уравнений в частных производных. При составлении этих уравнений в качестве аксиом принимают законы движения Ньютона. Предполагается также, что рассматриваемая жидкость (обычная жидкость или газ) всюду непрерывна и что на любую часть поверхности действует вполне определенное давление или какое-либо другое внутреннее напряжение (сила, приходящаяся на единицу площади), которое, по крайней мере локально, является дифференцируемой функцией координат, времени и направления. Наконец, устанавливается связь этих напряжений с движением жидкости посредством введения различных параметров, характеризующих данное вещество (плотность, вязкость и т. д.), и функциональных зависимостей (закон адиабатического сжатия и т. п.). Исходя из таких допущений, математики составили системы дифференциальных уравнений для различных идеализированных жидкостей (несжимаемой невязкой, сжимаемой невязкой, несжимаемой вязкой и т. д.).  [c.15]


Принцип конечных разностей. Приближенное решение дифференциального уравнения в частных производных, как, например, уравнения Лапласа, может быть получено в числовом выражении путем принятия пространственного распределения или сетки значений в области и проверки, удовлетворяют ли принятые значения соответствующее уравнение и граничные условия. В случае, если эти значения не удовлетворяют уравнение, их корректируют. Для выполнения этих операций необходимо заменить бесконечно малые дифференциальные элементы элементами малыми, но конечными, а затем воспользоваться методами теории конечных разностей. Приближенное выражение можно получить для функции ф уравнения Лапласа, приняв значения ее величины в равномерно распределенных точках такими, как показано на рис. 40. Расстояние а принимается достаточно малым, чтобы изменение функции от точки к точке можно было считать линейным. Если Хо и г/о — координаты центральной точки, то в точках  [c.131]

Решение системы а дифференциальных уравнений в частных производных типа (П6-4), связанных между собой нелинейными членами, требует очень сложных расчетов. Их следует проводить в разумных приближениях. Поэтому для каждой конкретной проблемы, как правило, следует оценить те члены, которыми можно пренебречь. Помимо названных материальных констант, должны учитываться реальные условия, в которых протекают исследуемые процессы длительность взаимодействующих групп волн (длительность импульса), длина кюветы, время установления колебаний, коэффициенты усиления, время разбегания групп волн, взаимодействие различных эффектов НЛО. Для обработки математической части этой задачи преимуществом обладает фурье-представление уравнения (П6-4). В этой связи сошлемся на выкладки, приведенные в конце разд. 1.321. В фурье-представлении отдельные члены принимают вид членов разложения в ряд по степеням fk или q(fh), что значительно облегчает количественные оценки. Так, например, отношение третьего слагаемого ко второму слагаемому в левой части обычно имеет порядок отношения q(fh)lq fh), а отношение пятого слагаемого к четвертому — порядок fft/fft. При соответствующих экспериментальных условиях может оказаться полезным перейти от координат t я z к другим координатам, чтобы можно было описать нестационарное поведение при помощи наиболее простого дифференциального уравнения (пренебречь производными высших порядков). Такое упрощение может быть достигнуто (см., например, [21]), если считать волновую амплитуду Е зависящей от координат Z и w t — Z. Вторая координата позволяет непосредственно задать изменение Е в системе, движущейся вместе с группой волн (групповая скорость w ). Упрощение дифференциального уравнения может быть достигнуто, если при соответствующих экспериментальных условиях исходить из допущения, что Е лишь относительно медленно меняется с изменением г при постоянном значении w t — Z.  [c.233]

Приближенные методы решения уравнений пограничного слоя, в случае обтекания выпуклого контура для решения задачи о пограничном слое развит ряд приближенных методов, основанных либо на использовании интегральных соотношений, либо на специальном выборе безразмерных независимых переменных, с помощью которых дифференциальные уравнения в частных производных сводятся к одному или к последовательности обыкновенных нелинейных дифференциальных уравнений, которые решаются в дальнейшем численно. Подробное изложение этих методов приведено в ряде монографий [7] — [12] и отдельных статей. Мы изложим здесь наиболее удобный и допускающий непосредственно обобщение на случай течения газа метод использования интегральных соотношений, следуя в основном [7].  [c.511]

Приближенные методы решения дифференциальных уравнений в частных производных связаны с необходимостью выполнения весьма большой вычислительной работы, из-за чего ранее в инженерной практике нередко отказывались от использования этих уравнений. С появлением быстродействующих вычислительных машин трудности в производстве большой вычислительной работы практически исчезли. В связи с этим рассмотрим один из методов решения уравнений (Х1Х.6) и (Х1Х.9) с учетом возможности использования вычислительной техники.  [c.385]

Метод сеток или, иначе, метод конечных разностей наиболее распространенный для приближенного решения дифференциальных уравнений в частных производных. Основная идея метода сеток заключается в том, что дифференциальное уравнение, начальные и граничные условия заменяются системой конечноразностных алгебраических уравнений, приближенно представляющих данную краевую задачу. Рассмотрим применение метода сеток к решению задач теплопроводности на примере двухмерной задачи.  [c.24]

Кроме того, второе приближение явилось как бы связующим звеном для двух самостоятельных разделов механики сплошных сред физики ударных волн, использующей нелинейный аппарат конечно-разностных соотношений, и акустики, имеющей на вооружении математический аппарат нелинейных дифференциальных уравнений в частных производных. Следует заметить, что при решении ряда проблем нелинейно-акустический и газодинамический подходы одинаково эффективны. В частности, правило равенства площадей может быть получено как с помощью интегральных соотношений на разрыве (см. гл. I, 4), так и предельным переходом Re- oo в решениях уравнения Бюргерса, (но не в самом уравнении ).  [c.177]

Исследование колебаний неоднородных ограниченных упругих тел приводит к решению дифференциальных уравнений в частных производных с переменными коэффициентами, что представляет очень большие трудности. Роль приближенных уточненных теорий в связи с этим еще больше возрастает, так как анализ соответствующих им уравнений значительно проще, чем трехмерных уравнений. Кроме того, деформация сдвига при наличии неоднородностей может оказывать существенное влияние на колебания и классическая теория Бернулли—Эйлера будет приводить к большим погрешностям.  [c.91]

Наиболее известным случаем приближенного решения уравнений Навье — Стокса являются решения уравнений пограничного слоя (Шлихтинг [1968]). Это могут быть аналитические решения, автомодельные решения, полученные численным интегрированием обыкновенных дифференциальных уравнений, и, наконец, неавтомодельные решения дифференциальных уравнений в частных производных. Отметим, что разница в рассмотрении уравнений пограничного слоя и полных уравнений Навье — Стокса состоит не только в пренебрежении диффузионными членами в направлении основного потока, но и в постановке граничных условий на внешней границе.  [c.488]

Примеры, рассмотренные в этой главе, показали, что метод многих масштабов применим как к задачам, которые могут быть изучены с помощью метода сращивания асимптотических разложений, таким, как задача о космическом корабле Земля—Луна, так и к задачам, которые не могут быть изучены с помощью последнего метода, таким, как задачи о нелинейных колебаниях. Метод многих масштабов дает одно равномерно пригодное разложение в отличие от метода сращивания асимптотических разложений, в котором рассматриваются два разложения, подлежащих сращиванию. Хотя и в методе многих масштабов обыкновенное дифференциальное уравнение преобразуется в дифференциальное уравнение в частных производных, получение первого приближения не представляет больших трудностей, чем решение первого внутреннего уравнения. Однако трудными для  [c.324]


Метод конечных разностей является универсальным методом приближенного решения дифференциальных уравнений. Ои позволяет сводить приближенное решение уравнений в частных производных к решению систем алгебраических уравнений. В настоящее время этот метод применяется для решения плоских задач о напряженном состоянии массивов грунтов.  [c.52]

При решении краевых задач приближенные модели технических объектов можно строить на основе интегральных уравнений. При этом первый шаг на пути к ре-илению состоит в переходе от дифференциальных уравнений в частных производных к эквивалентным интегральным уравнениям. Во многих случаях, когда такой переход оказывается успешным, решение исходной задачи может быть получено с минимальными вычислительными затратами и высокой степенью точности. Кроме того, размерность исходной задачи понижается на 1, двухмерные задачи преобразуются в одномерные.  [c.60]

Таким образом, представление, использующее технику функционального интегрирования, физически эквивалентно обычному, использующему дифференциальные уравнения в частных производных. Математически подход, связанный с винеровскими интегралами, более сложен при проведении точных расчетов, однако его основными достоинствами являются компактность записи и физическая наглядность, прежде всего при использовании приближенных методов решения задач ( ).  [c.96]

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]

Тепловые процессы, протекающие в теплоэнергетических установках, в общем случае описываются сложными системами нелинейных дифференциальных уравнений в частных производных (уравнения энергии, сплощности, движения и др.), а также нелинейными алгебраическими уравнениями. Современный математический аппарат не всегда позволяет решить такие системы аналитически. Применение численных методов дает возможность получить приближенное решение с достаточной для инженерной практики точностью. Для получения такого решения необходимо предварительно провести довольно значительную исследовательскую работу по разработке достаточно полных математических моделей, пригодных для реализации на вычислительных машинах. Эта работа, как правило, предполагает  [c.7]

Анализ процессов переноса тепла конвекцией и излучением в пограничном слое излучающей, поглощающей и рассеивающей-жидкости приводит к системе дифференциальных уравнений в частных производных и интегродифференциальных уравнений, которые должны решаться совместно. Математические трудности, возникающие при решении этой системы сложных уравнений, побудили м-ногих исследователей к поискам приближенных методов решения той части задачи, которая связана с излучением. Некоторые авторы использовали приближение оптически толстого слоя, так как оно позволяет решать задачу с помощью обычных методов, использующих автомодельность течения. Приближение оптически тонкого слоя и экспоненциальная,аппроксимация ядра также приводят к значительному упрощению задачи.  [c.524]

Шредингера на отдельные уравнения для каждого электрона, а электронные волновые функции при этом представляются в виде произведений одноэлектронных молекулярных орбиталей. При решении колебательно-вращательного уравнения Шредингера используются приближения жесткого волчка и гармонического осциллятора. Приближенное колебательно-вращательное уравнение получается разделенным, и каждая из собственных функций является произведением врай1,ательной волновой функции, зависящей от трех переменных, и колебательной волновой функции, которая в свою очередь является произведением волновых функций 3N — 6) гармонических осцилляторов, где М — число ядер в молекуле [для линейной молекулы вращательная волновая функция зависит от двух координат, а колебательная волновая функция — от (ЗЛ — 5) координат]. Все эти приближения принимаются феноменологически, исходя из свойств молекул, а не из абстрактного математического анализа имеющихся дифференциальных уравнений в частных производных.  [c.131]

В приближении Борна — Оппенгеймера решение (3/ — 3)-мер-пого ровибронного уравнения Шредиигера (8.1) сводится к решению двух дифференциальных уравнений электронного уравнения Шредингера (8.2), включаюш,его 3 электронных координат, и колебательно-вращательного уравнения Шредингера (8.5), включающего 3N — 3) ядерных координат. Аппроксимируем каждое из этих уравнений так, чтобы они свелись к отдельным разрешимым дифференциальным уравнениям в частных производных, и получим приближенные электронные и колебательно-вращательные волновые функции Ф (или Фео) и Ф%.  [c.186]

Решение задач вязкоупругопластичности связано с решением системы нелинейных интегро-дифференциальных уравнений в частных производных типа (1.68), (1.69). Это представляет собой не менее сложную математическую проблему, чем задачи теории пластичности. 17оэтому воспользуемся здесь методом последовательных приближений, который базируется на методе упругих решений Ильюшина, рассмотренном ранее.  [c.62]

Согласно изложенному методу, формулу для определения собственной частоты колебаний ортотропной пластинки можно получить исходя из соотношения для собственных частот колебаний изотропной пластинки, в связи с чем отпа1дает необходимость решать сложное дифференциальное уравнение в частных производных, определяющее свободные колебания ортотропной пластинки. Однако в общем невозможно определить ошибку приближенной формулы, в связи с чем точность решения необходимо оценивать в каждом случае. В настоящей статье в качестве примера была рассмотрена прямоугольная пластинка, состоящая из двух частей разной толщины с шарнирно опертыми сторонами. Результаты численных расчетов показали, что предложенная здесь приближенная фор--мула может быть использована в практическом случае.  [c.164]

Приближенные методы решения для установившихся потоков. Вообще проблемы пограничного слоя не могут быть сведены к решению обыкновенного дифференциального уравнения. Математически изящный метод решения уравнений двухмерного пограничного слоя в частных производных, предложенный впервые Блазиусом и развитый впоследствии К. Хейменцом и Л. Говардом, выражает распределение скорости степенным рядом по длине дуги вдоль границы с коэффициентами, представляющими универсальные функции ортогональных координат. Этот метод обладает тем преимуществом, что, раз затабулиро-вав универсальные функции, можно решать любые двухмерные проблемы с помощью только арифметических выкладок. Недостатком этого метода, однако, является то, что в случае медленной сходимости для получения точного решения требуется большее число универсальных функций, чем затабулировано. Тем не менее этот метод очень ценен для проверки точности других более простых методов с меньшим приближением и используется на практике для расчета первого участка ламинарного пограничного слоя, тогда как следующие по течению участки рассчитывают при помощи одного из имеющихся численных приемов получения последовательных изменений профиля пограничного слоя. Хотя эти методы являются действенными средствами решения проблем ламинарного пограничного слоя, ограниченность объема настоящей работы не позволяет изложить их здесь. Вместо этого рассмотрим метод решения, предложенный Вейгард-том, считающийся лучшим из известных методов. В этом методе дифференциальное уравнение- в частных производных также заменяется приблизительной системой обыкновенных дифференциальных уравнений.  [c.312]


Решение задач термовязкоупругопластичпости связано с решением системы нелинейных иптегро-дифференциальных уравнений в частных производных (10.10), что представляет собой чрезвычайно сложную математическую задачу, об аналитическом решении которой говорить не приходится. Поэтому воспользуемся здесь методом последовательных приближений, который базируется на методе упругих решений Ильюшина.  [c.234]

При решении прикладных задач механики сплошной среды, нриводя-ш их к системам дифференциальных уравнений в частных производных, широкое распространение получили методы интегральных соотношений. Они позволяют при приближенном решении задач уменьшить число независимых переменных в дифференциальных уравнениях и даже свести их к алгебраическим.  [c.321]

Описание вынужденного рассеяния Бриллюэна основано на дифференциальных уравнениях (2.51-16) и (2.52-1) для давления и электрического поля. Решение этой системы дифференциальных уравнений в частных производных в общем случае очень затруднено. Поэтому мы рассмотрим решения при некоторых упрощающих предположениях. Прежде всего мы ограничимся стационарными решениями. Они позволяют получить приближенное описание реальных фактов, если длительность световых импульсов очень велика по сравнению с временем установления колебаний в среде. Это время задается обратны. значением константы затухания Г, которая равна удвоенному ароизведению скорости звука V и коэффициента поглощения звуковой мощности и для жидкостей п,ри комнатной температуре и%1еет порядок величины 10" с. При рассмотрении стационарных процессов можно исходить из обыкновенных дифференциальных уравнений (2.52-3), (2.52-5) и из соответствующего уравнению (2.52-5) уравнения для амплитуды лазерной волны. Будем снова а,реиебрегать вторыми производными от амплитуды, а в правой части уравнения (2.52-3) также и первой производной. Условия применимости такого приближения обсуждались в разд. 1.322. Тогда мы получим систему  [c.217]

Можно в общем случае решить и уравнение для функции Га. Это решение было получено в работе [123] при исс.ледовании уравнения переноса излучения в малоугловом приближении (2.14). Позднее аналогичное решение исследовалось в работах [110, 124]. Если в (2.14) произвести преобразование Фурье по переменной Л, которая не входит в коэффициенты уравнепия, то мы получим линейное дифференциальное уравнение в частных производных первого порядка, которое легко решается, папример, методом характеристик. Это решение имеет вид  [c.266]

Решение системы конечно-разностных уравнений с ошибочными граничными условиями может давать приближение к решению системы дифференциальных уравнений в частных производных в некотором полезном смысле, однако в математическом смысле в этом случае аппроксимация отсутствует при Длг О решение системы конечно-разностных уравнений не стремится к решению исходной системы дифференциальных уравнений в частных производных. Любопытно, что математики не обращали внимания на применение таких ошибочных граничных условий. Только сравнительно недавно появились статьи о глобальном влиянии подобных переопределенных граничных условий, см. Крейс и Лундквист [1968] и Ошер [19696]. Удобный способ отражения можно до некоторой степени спасти, применяя его к уравнениям неразрывности и энергии и принимая специальные меры для обращения в нуль члена d puv)/dy в уравнении количества движения в проекции на ось х. Это даст непротиворечивые граничные условия на прямой стенке.  [c.393]


Смотреть страницы где упоминается термин Дифференциальное уравнение в частных производных приближенное решение : [c.450]    [c.242]    [c.22]    [c.382]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.47 , c.48 ]



ПОИСК



Дифференциальное уравнение в частных производных

Дифференциальные Решения приближенные

Дифференциальные в частных производных

К п частный

Приближенное решение дифференциальных уравнений

Производная

Производная частная

Решение дифференциального уравнения

Решение уравнений в частных производных

Решения приближенные

Уравнение в частных производных

Частные производные

Частные решения



© 2025 Mash-xxl.info Реклама на сайте