Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент гироскопический в относительном движени

Влияние гироскопических сил на свободные колебания твердого тела с четырьмя степенями свободы. Для составления дифференциальных уравнений малых колебаний твердого тела при наличии гироскопических сил следует применять теорему о движении центра инерции системы материальных точек вместе с теоремой об изменении главного момента количеств движения системы материальных точек в относительном движении по отношению к центру инерции.  [c.624]


Гироскопический эффект в относительном движении. Новое выражение принципа стремления осей вращения к параллельности. — Предположим, что угловая скорость Гд вращения тела вокруг собственной оси очень велика, так что ее можно считать весьма большой величиной первого порядка, между тем как составляющие р, q, нормальные к оси тела, весьма малы, так же как и вращение 0)5 подвижного тела отсчета. Рассматривая эти количества как малые первого порядка, мы можем считать все члены, входящие в выражения 2, ЛI2, М и за исключением первого члена выражения малыми величинами второго порядка. Если пренебречь малыми членами второго порядка, то результирующий момент фиктивных сил, которые прикладываются к телу в относительном движении, приводится только к моменту относительно оси 0x2, имеющему приближенное значение  [c.177]

Гиростат d гироскопической структурой. Мы будем говорить, что гиростат имеет гироскопическую структуру, если а) неизменное распределение масс системы Е является гироскопическим относительно неизменно связанной с телом оси г, проходящей через центр тяжести б) гиростатический момент (или результирующий момент количеств движения в относительном движении) х направлен по этой оси.  [c.224]

К колесной паре приложена сила тяжести, вертикальные и горизонтальные реакции рельсов и силы трения. Сумма моментов этих сил относительно оси, проходящей через неподвижную точку на оси колесной пары перпендикулярно к плоскости, в которой лежат оси ее относительного и переносного вращательных движений (относительно линии узлов), равна гироскопическому моменту, взятому с обратным знаком. Он вычисляется по формуле (III.57) или формуле (III.58), Угловой скоростью ф является угловая скорость вращения колесной пары вокруг ее собственной оси, угловой скоростью прецессии — угловая скорость вращения вокруг вертикальной оси, проходящей через центр закругления железнодорожной колеи,  [c.444]

Приближенная теория гироскопических явлений позволяет дать элементарное объяснение движению тяжелого гироскопа (волчка). Сообщим (рис. 387) симметричному однородному телу вращения быстрое вращение вокруг его оси. Допустим, что эта ось, будучи в исследуемом положении вертикальна, может вращаться вокруг неподвижной точки О. Если бы гироскоп пе вращался, то имелось бы неустойчивое положение равновесия. Быстрое вращение сообщает гироскопу свойство устойчивости. В самом деле, дадим оси толчок в направлении, перпендикулярном к плоскости рисунка, приложив к ней в течение весьма малого промежутка времени силу F. Следствием этого, если оставаться в рамках элементарной теории, будет перемещение оси материальной симметрии тела (т. е. вектора К) на некоторый угол в направлении момента силы F относительно неподвижной точки О, т. е. в направлении, перпендикулярном к F (новое положение оси указано на рис. 387 штриховой линией).  [c.371]


Сообщим теперь системе с вращающимся ротором вместе с основанием дополнительное вращение со скоростью м относительно оси, перпендикулярной к оси х, например, относительно оси г. В этом случае ротор будет совершать сложное вращение и элементарные массы его будут приобретать ускорение Кориолиса, а в них, следовательно, будут возникать силы инерции. Действие этих сил сводится к паре сил и образует гироскопический момент Мг, вектор которого перпендикулярен к плоскости векторов П и м. Гироскопический момент стремится повернуть ось вращения гироскопа X так, чтобы вектор основного вращения й кратчайшим путем совместился с вектором (О. Величина гироскопического момента для рассматриваемого случая движений может быть найдена из выражения  [c.360]

Рассмотрим астатический гироскоп с тремя степенями свободы (см. рис. 3.119), ротор которого вращается с угловой скоростью О. Ранее было показано, что положение главной оси такого гироскопа не изменяется при различных движениях основания. В астатическом гироскопе с тремя степенями свободы главная ось гироскопа не обладает избирательностью направления, она одинаково устойчиво сохраняет любое направление, которое ей было придано или какое она по тем или иным причинам приняла. Вместе с тем установлено, что положение главной оси зависит от внешних сил, образующих момент относительно оси вращения одного из колец гироскопа (момент внешних сил может создаваться неуравновешенностью колец, действием пружин и т. п.). Наличие такого момента вызывает движение главной оси — прецессию. Установим взаимосвязь между движением главной оси гироскопа и внешними силами, создающими момент относительно оси вращения одного из колец, например, внутреннего 2. Так как в опорах подвеса колец возникают моменты сил-трения, являющиеся моментами относительно их осей вращения, то получить в чистом виде загружение одного кольца внешними силами нельзя и это усложняет задачу, так как моменты трения, в свою очередь, вызывают прецессию. Поэтому вначале пренебрегаем трением в опорах подвеса колец гироскопа. Момент внешних сил, действующих на кольцо 2, примем равным М, а вектор его М— совпадающим с осью у (см. рис. 3.119). Под действием этого момента внутреннее кольцо, а следовательно и ротор гироскопа, начнут поворачиваться в направлении действия момента М, что приведет к возникновению гироскопического момента Мг, равного по величине и противоположного по направлению М. Под действием гироскопического момента Мг ротор гироскопа I вместе с внутренним 2 и наружным 3 кольцами будет поворачиваться относительно оси наружного кольца г с угловой скоростью прецессии оо, величина которой может быть найдена по зависимости  [c.362]

Катящийся колесный стан железнодорожного вагона представляет собой гироскоп, момент импульса которого при быстром движении поезда может стать весьма значительным. Для того, чтобы при прохождении поезда по криволинейному пути отклонять упомянутый момент в положение, отвечающее нормали к кривой, необходим, согласно уравнению (27.1), вращающий момент М, направленный в сторону движения поезда. Так как такого момента М нет, то в качестве гироскопического эффекта возникает противоположный момент, прижимающий колесный стан к наружному рельсу и отрывающий его от внутреннего рельса. Этот момент складывается с моментом центробежной силы относительно направления движения поезда (для уменьшения влияния центробежного момента придают наружному рельсу при укладке пути некоторое превышение над внутренним). Оба момента пропорциональны mv(jj где V — скорость движения поезда, uj — угловая скорость на кривой величина т в нашем случае является массой колесного стана, приведенной к окружностям колес, а в выражении центробежной силы — общей массой вагона, приходящейся на колесный стан. Таким образом, рассматриваемый гироскопический момент очень мал по сравнению с моментом центробежной силы его можно было бы учесть незначительным дополнительным превышением наружного рельса над внутренним.  [c.207]


Так как этот единичный вектор к, по определению, не изменяется в теле, а с другой стороны, в настоящем случае г постоянно и речь идет о движении по инерции, а это значит, что момент К неподвижен в пространстве, то из предыдущего выражения для w мы видим, что угловая скорость есть сумма двух векторов постоянной величины, первый из которых, направленный по К, неподвижен в пространстве, а второй, направленный по к, неподвижен в теле. Этого достаточно для того, чтобы можно было заключить (т. I, гл. IV, п. 15), что всякое движение по инерции- твердого тела с гироскопической структурой относительно закрепленной точки О представляет собой регулярную прецессию, имеющую осью прецессии прямую, параллельную моменту К количеств движения и проходящую через точку О, и осью фигуры — его гироскопическую ось. Обозначим через х единичный вектор (неподвижный в пространстве) момента К и введем характеристические элементы любой регулярной прецессии, т. е. угловую скорость Mj = k, которую можно назвать собственной для твердого тела или гироскопической, угловую скорость щ = пре-  [c.92]

Анализ частотного уравнения в применении к решаемой задаче позволяет сделать вывод о возможности пренебрежения гироскопическим эффектом и рассмотрения раздельных плоских колебательных движений во взаимно перпендикулярных направлениях, что существенно упрощает вид уравнения и решение его. При этом момент инерции относительно оси вращения исключается и в частотном уравнении остаются только масса винта, момент инерции его относительно диаметра и расстояние от центра инерции до точки крепления — носового среза ступицы винта.  [c.237]

Рассмотрим движение относительно центра масс осесимметричного тела на начальном атмосферном участке полёта. После входа в атмосферу статически устойчивое тело начинает испытывать действие восстанавливающего аэродинамического момента, который стремится совместить продольную ось с вектором поступательной скорости. Однако движению по тангажу противодействуют гироскопические силы, вызывающие вынужденную прецессию вектора кинетического момента Р относительно вектора скорости центра масс. Вектор кинетического момента отклоняется в ту сторону, куда направлен вектор восстанавливающего аэродинамического момента. На рис. 1.9 изображены различные случаи вращательного движения осесимметричного тела на начальном атмосферном участке полёта, даны проекции траекторий, описываемых носовой точкой тела, на плоскость, перпендикулярную к вектору скорости центра масс.  [c.46]

При спуске тела в атмосфере в ряде случаях вследствие действия момента, вызванного малой асимметрией, возникает явление, обусловленное гироскопическим взаимодействием нутационного движения и движения по крену [20]. Это явление получило название резонанса крена или лунного резонанса. Тело совершает колебания вокруг собственной продольной оси относительно набегающего потока. Тело обращено одной стороной к набегающему потоку и средняя угловая скорость собственного вращения близка к нулю Л 0. При резонансе крена, вызванном поперечным смещением центра масс с оси симметрии тела ( т, т ф 0), возникает явление, аналогичное плоскому нутационному движению тела под действием восстанавливающего момента, роль которого играет момент крена от нормальной аэродинамической силы  [c.120]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]

Угол а сохраняет при этом малое значение из-за свойства гироскопа уравновешивать приложенный внешний момент гироскопическим моментом М, = Щ, возникающим при движении гироскопа относительно оси прецессии. Однако в результате действия различных факторов, главным образом момента Мз на оси прецессии, угол стабилизации а может с течением времени возрастать. Для ликвидации ухода по оси стабилизации служит цепь коррекции гиростабилизатора, состоящая из корректирующего устройства КУ (маятника, акселерометра и т. п.), усилителя У2 и датчика момента ДМ.  [c.171]


Из уравнения (19.6) следует, что ось гироскопа изменяет свое положение в пространстве только под действием таких внешних сил, момент которых относительно центра масс гироскопа йе равен нулю. Если ось гироскопа горизонтальна и на один из концов действует внешняя сила, направленная, например, вниз, то ось гироскопа будет двигаться не вниз, а вбок, т. е. будет наблюдаться гироскопический эффект который проявляется в том, что движение оси гироскопа определяется не направлением внешней силы, а направлением ее момента.  [c.75]

Из анализа движения гироскопа и выражения для его угловой скорости (3.143) можно заключить, что в гироскопе с тремя степенями свободы, на одно из колец которого действуют внешние силы, создающие моменты относительно его оси подвеса, возникает прецессионное движение вокруг оси вращения второго кольца. Скорость прецессии при этом прямо пропорциональна моменту внешних сил, действующих относительно оси вращения кольца, и обратно пропорциональна моменту инерции ротора, его угловой скорости и синусу угла между кольцами подвеса. Для большинства гироскопических приборов, использующих гироскоп с тремя степенями свободы,  [c.362]

Тела, подобные телам вращения в отношении гироскопических свойств.—в предыдущем пункте мы сформулировали принцип стремления осей вращения к параллельности на основе изложенной выше теории движения тяжелого однородного тела вращения. Однако ни эта теория, ни самый принцип, который мы из нее вывели, не требуют, чтобы твердое тело было на самом деле телом вращения достаточно, чтобы центральный эллипсоид инерции тела был эллипсоидом вращения. Если это условие осуществлено, то ось симметрии этого эллипсоида будет обладать всеми свойствами, которые были выведены для оси симметрии тела в изложенной выше теории. Действительно, в силу соотношения, связывающего моменты инерции относительно двух параллельных прямых (п° 319), каждая точка оси симметрии центрального эллипсоида есть центр  [c.160]

Чтобы иметь определенный случай, сообщим телу вращение в положительную сторону вокруг его оси Тг. Скорость точки касания О будет направлена в сторону положительного вращения вокруг оси Тг, касательная же реакция плоскости будет направлена в обратную сторону. Момент относительно точки Г этой реакции лежит в вертикальной плоскости ОГг и направлен по перпендикуляру к ОГ в сторону вертикали, проведенной вверх. Поэтому в движении тела около центра тяжести ось Ог тела вследствие гироскопического эффекта перемещается к оси момента, представляющей собой ось того вращения, которое стремится сообщить телу пара ось Ог перемещается, следовательно, вверх. Таким образом, как было указано выше, эффект силы трения со стороны плоскости заключается в том, что эта сила стремится выпрямить ось симметрии тела (приблизить ось тела к вертикали).  [c.208]

Случай тела с гироскопической структурой. Предыдущие результаты получены в предположении, что три главных момента инерции относительно точки О неравны между собой поэтому нужно отдельно рассмотреть случай, когда некоторые из моментов инерции совпадают. Однако бесполезно останавливаться на предположении Л = В = С (эллипсоид инерции, сводящийся к шару), при котором, как мы знаем, все возможные движения твердого тела сводятся к перманентным вращениям, так что устойчивость каждого из них очевидна.  [c.97]

Рассмотрим теперь три оси х, у, г с началом в О, имеющие ориентированные направления трех единичных векторов t (касательной к траектории вершины в направлении возрастающих s), v (перпендикуляра к / и к оси гироскопа 00, направленного влево для наблюдателя, который, расположен по 00 и смотрит в направлении /), ft (гироскопической оси 00). Проектируя на них уравнение моментов количеств движения относительно точки О, мы получим скалярные уравнения  [c.156]

Если с внутренним кольцом карданова подвеса гироскопического компаса жестко связать тяжелую дугу и сообщить ротору гироскопа вращение вокруг горизонтальной оси, не лежащей в меридиональной плоскости, то она, стремясь сохранить неизменное направление, начнет совершать движение относительно Земли. Пусть, например, в начальный момент ось отклонена к востоку от меридиана. Стремясь сохранить постоянное направление при вращении Земли, ось немного поднимется над горизонтом, тяжелая дуга, отклонившись от положения равновесия, создаст момент, действующий на гироскоп. Этот момент будет заставлять гироскоп повернуться в направлении к северу. То же произойдет, если в начальный момент ось гироскопа отклонена к западу.  [c.432]

Природа возмущающего момента может быть различной. Он может возникать 1) от небаланса веса наружной рамки и установленных на ней элементов 2) от сил сухого трения в подвесе наружной рамки, редукторе, двигателе или в элементах, сцепленных с наружной рамкой, например датчиках систем трансляции, преобразователях координат и т. п. 3) от сил скоростного (вязкого) трения, возникающих при движении основания, на котором установлен стабилизатор, во всех этих элементах, главным образом в двигателе, так как скорость его вращения оказывается наибольшей, а его коэффициент скоростного трения также оказывается обычно наибольшим 4) от инерционных сил, возникающих при движении основания в элементах, сцепленных с осью наружной рамки через редуктор (в двигателе и в первых колесах редуктора) 5) от гироскопического эффекта, вызываемого вращением опорной системы координат, относительно которой определяются углы а и 3 (вращение Земли, движение объекта по поверхности Земли и др.).  [c.172]

Отметим, что тело, на которое действует гироскопический момент, может под действием этого момента совершать движение. Например, пусть наружная рамка гироскопа в кардановом подвесе жестко укреплена на каком-либо основании (рис. 5.11). Пусть угловая скорость ротора равиа и направлена так, как указано на рио. 5. 1. Сообщим теперь основанию угловую скорость ю,. Пара сил Р, Р, момент которых относительно неподвижной точки равен возникшему гироскопическому моменту Мг, будет поворачивать внутреннее кольцо в направлении, указанном на рис. 15.11 стрелкой, т. е.  [c.549]

Гироскопический тахометр установлен на платформе, вращающейся с постоянной угловой скоростью и вокруг оси С. Определить первые интегралы движения, если коэффициент жесткости спиральной пружины равен с, моменты инерции гироскопа относительно главных центральных осей х, у, г соответственно равны А, В и С, причем В = А силы трения на оси г собственного вращения гироскопа уравновешиваются моментом, создаваемым статором электромотора, приводящим во врапгение гироскоп силами трения на оси прецессии н пренебречь.  [c.373]

Эти уравнения имеют типичную гироскопическую структуру. Как и в уравнения (48) движения гиротахоакселерометра, в уравнение, содержащее а (уравнение для координаты а), входит произведение обобщенной скорости р и проекции /зоь главного момента количеств движения на ось гироскопа в уравнение для координаты р также входит гироскопический член — произведение множителя /зЮг на обобщенную скорость, соответствующую другой координате а, но взятое с противоположным знаком. Гироскопическую структуру имеют уравнения (51) 167 относительно движения тяжелой точки на вращающейся Земле, в которых роль гироскопических членов выполняют слагаемые, происходящие от кориолисовой силы инерции. Таковы же уравнения (60) 169 колебаний маятника Фуко.  [c.624]


То обстоятельство, что приращение М —М определяется произведением вектора СеХй, одинакового в любой момент в обоих движениях, на скалярную величину Гд, показывает, что необходимое усилие для изменения положения гироскопической оси по заданному закону движения, при прочих равных условиях, будет тем более, чем быстрее вращение вокруг этой оси. Далее, если при очень большом Го необходимо очень значительное усилие, то ясно, что небольшие-усилия могут дать только ничтожный эффект этим как раз и объясняется стремление тел с гироскопической структурой, быстро вращающихся около оси симметрии, сохранять приблизительно неизменным (относительно неподвижных звезд) направление своей оси, даже если небольшими усилиями пытаются вызвать ее отклонение.  [c.78]

Таким образом, во время прецессил относительно оси X, совершающейся по часовоу стрелке, если смотреть со стороны оси +Х, количество двйженйя каждой материальной частицы обода при изменении ее полярного угла 0 от —90° до +90°. (при движении частицы в направлении +0 через 0) изменяется в направлении, которое совпадает с отрицательным направлением оси Z. При изменении угла 0 от +90° до —90° (в направлении +0 через 180°) количество движения изменяется в направлении, совпадающем с положительным направлением оси Z. Для таких изменений количества движения необходимы силы, эквивалентные моменту, действующему относительно оси Z. Так как положительный момент приводит к прецессионному движению, его называют прецессионным, иян гироскопическим, моментом. Величину этого момента можно определить следующим образом.  [c.129]

Более эффективное использование момента гироскопических сил достигается в предложенном Э. Сперри активном гироскопическом успокоителе качки (1911). В нем имеется два двухстепенных гироскопа большой силовой и малый — индикаторный. Большой гироскоп подвешен и ориентирован на судне так же, как в успокоителе системы Лликка, но центр масс подвижной системы находится здесь на оси прецессии, а момент на этой оси создается с помощью исполнительного электродвигателя и управляемого тормоза. Малый гироскоп играет роль датчика угловой скорости бортовой качки. Для этого его прецессионные движения стеснены возвратной пружиной и он расположен на судне так, что ось прецессии его перпендикулярна плоскости палубы, а ось ротора в положении равновесия параллельна поперечной оси судна. Малый гироскоп через контактное устройство по оси прецессии управляет большим гироскопом так, что либо накладывает на камеру последнего полный момент сил того или иного знака, развиваемый двигателем, либо посредством электромагнитного тормоза стопорит камеру большого гироскопа относительно судна.  [c.172]

Рассмотренная картина движения спутника около центра масс выявляет своеобразную гироскопическую стабилизацию относительно направления перигейной касательной, то есть относительно направления скорости центра масс в точке наибольшей интенсивности аэродинамических сил. В самом деле, хотя перигейная касательная вследствие эволюции орбиты поворачивается в абсолютном пространстве, угловое расстояние между вектором кинетического момента и перигейной касательной изменяется относительно начального значения несущественно, так что ось спутника совершает прецессионно-нутационное движение относительно изменяющегося со временем направления перигейной касательной.  [c.257]

Рассмотрим механизм энергопереноса крупными вихрями более подробно. Вследствие радиального фадиента осевой скорости возникают тороидальные вихри, в которых локализуется энергия осевого движения как приосевого, так и периферийного потоков. Под воздействием гироскопического эффекта эти вихри разворачиваются относительно своей криволинейной оси и взаимодействуют с окружным движением, создавая положительный фадиент избыточного давления, что приводит к смещению их на периферию и к последующей диссипации. Для изменения направления момента импульса элемента вихревого кольца необходима энергия, производимая моментом сил. Очевидно, таким моментом может являться вязкий момент сил трения, возникающий между вращающимися приосевым и периферийным вихря-  [c.132]

Относительная краткость курса потребовала щателыюго отбора теоретического материала и примеров, поясняющих основные разделы курса. В курс включен ряд дополнительных разделов, В динамике достаточно полно изложена общая теория малых колебании механических систем с одной н двумя степенями свободы. В аналитическом динамике даны канонические уравнения Гамильтона и принцип Остроградского—Гамильтона. Расширена глава Динамика твердого тела с одной закрепленной точкой . Наряду с приближенной теорией гироскопа дополнительно изложена точная теория гироскопического момента при регулярной прецессии. В специальных главах изложены также элементы теории искусственных спутников и основные сведения по движению точки переменной массы.  [c.3]

Напомним, что под этим, по терминологии, установленной в п. 17 "Л. IV, подразумевается, что эллипсоид инерции тела относительно точ ки О будет эллипсоидом вращения (А — В). Вспомним, кроме того, что, аыбрав оси Oxyz, в которых Oz является гироскопической осью (т. е. осью этого эллипсоида вращения), и обозначив через k соответствующий единичный вектор и через А и С — главные моменты инерции, соответственно экваториальный и осевой, мы можем выразить угловую скорость о и результирующий момент количеств движения ЛГ в виде  [c.77]

Для этой цели мы возьмем снова обозначения и соглашения, которыми мы пользовались в пп. 54—57, и начнем с замечания, что барогироскоп движется под совместным действием веса и сложных центробежных сил в смысле, уточненном в п. 56. Единственная разница с гироскопической буссолью заключается в том, что момент относительно точки О веса не равен больше нулю, а имеет в направлении векторов v и ft (так как здесь взято а = я/2) составляющие —/n /sin0nO. Если введем, как в п. 55, аргумент 6 = s, который здесь представляет собой угол отклонения гироскопической оси от вертикали, то получим уравнения движения в виде (ср. (103 ) текста)  [c.181]

Среди работ конца 40-х — начала 50-х годов XX в. по теории корабельных инерщиальных систем следует отметить два направления. В одних работах выясняется возможность вычисления навигационных параметров по показаниям традиционных для того времени гироскопических приборов — гирокомпаса, гировертикали, свободных гироскопов. Такова, например, статья Ч. Фокса, в которой он показывает, что навигационные параметры корабля можно определить, если по показаниям гироскопического компаса корректировать два свободных гироскопа, а коррекционные моменты сил измерять Теория системы, состоящей из пространственного гирокомпаса и гироскопа направления, построена также А. Ю. Ишлинским В упомянутых работах впервые развивается метод составления уравнений, определяющих координаты и скорости объекта относительно вращающейся Земли при условии точного соответствия начального состояния системы начальным условиям движения объекта и при отсутствии инструментальных погрешностей системы. Эти уравнения, названные впоследствии уравнениями идеальной работы системы, принимаются в качестве алгоритма осуществляе-186 мых в ней вычислений. К сожалению, традиционный гироскопический компас, являясь высокосовершенным и надежным прибором при использовании его по прямому назначению, обладает ограниченными возможностями и не позволяет строить на его основе инерциальную систему достаточной точности.  [c.186]

Как следует из обобщенной теоремы площадей Чаплыгина (см. 1 гл. II), вектор момента количеств движения системы относительно точки опоры А постоянен. Убедимся в этом непосредственно. Обозначим через вектор длиною Срсо, направленный по оси гироскопа, и через Ьх, Ьуу — его проекции на оси координат. Пусть X и У — проекции на оси Ах и Ау силы трения (реакции идеальной неголономной связи), развивающейся в точке А опоры гироскопического шара о плоскость. Напишем уравнения движения центра масс и закон изменения момента количеств движения системы относительно центра масс в проекциях на оси координат Ахуг  [c.69]

Д. Чумаков правильно отметил, что на летательный аппарат в полете действуют следующие силы подъемная, пропульсивная, тяжести и сопротивления. Основываясь на хороших знаниях теоретической механики и собственных представлениях об особенностях полета будущего винтокрылого аппарата, автор рассмотрел характер его движения при различных условиях действия упомянутых сил и попытался дать рекомендации по их балансировке для обеспечения полета на установившихся режимах. Он указал ряд причин возможной разбалан-сировки вертолета несовпадение точек приложения внешних сил, не-идентичность несущих винтов, гироскопические моменты вращающихся частей, ошибки пилота, зависимость действующих на аппарат сил от режима полета, непостоянное положение центра тяжести, влияние ветра — и сделал вывод необходимости установки органов управления для балансировки сил и моментов относительно всех трех осей. Как основное средство продольно-поперечного управления предлагалось смещение центра тяжести перемещением тела летчика, а вспомогательное — аэродинамические рули и тормозные поверхности. Чумаков резонно заметил, что рули эффективны только при полете с поступательной скоростью, рекомендовав для безопасности осуществлять первые подъемы в воздух на канатах привязи. В заключение он предло-  [c.68]



Смотреть страницы где упоминается термин Момент гироскопический в относительном движени : [c.631]    [c.251]    [c.31]    [c.156]    [c.202]    [c.148]    [c.176]   
Курс теоретической механики. Т.2 (1977) -- [ c.55 ]



ПОИСК



Гироскопический

Движение относительное

Момент гироскопический

Момент гироскопический относительно оси

Момент относительно оси

Относительность движения



© 2025 Mash-xxl.info Реклама на сайте