Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точка тяжелая

Колесо с четырьмя симметрично расположенными спицами катится по шероховатой плоскости. Плоскость колеса вертикальна. Ободья колеса и спицы сделаны из тонкой тяжелой проволоки. Радиус колеса а, скорость центра его в исходном движении V. Исследовать устойчивость движения.  [c.435]

Обозначим через а угол наклона плоскости и через <р угол трения (статического) (фиг. 8). Можно утверждать, что если в какой-нибудь момент скорость равна нулю, то тяжелое тело или останется неподвижным, или начнет опускаться, смотря по тому, будет ли а ср или 9- Далее, если 5 будем отсчитывать по направлению вниз (исходя, например, от начального положения), то  [c.58]


Чтобы наглядно представить это соотношение, вообразим ряд ямочек, разделенных как бы грядками (рис. 39). Если какой-то тяжелый шарик ляжет в одну из этих ямок, то для того, чтобы он мог попасть в соседнюю ямку а , должна быть затрачена как минимум работа и подъема его до перевала хребта Ь, разделяющего обе ямки.  [c.88]

Доказать, что если 1, то тяжелый шарик, отпу-  [c.32]

В Великую Отечественную войну во время блокады г. Ленинграда ученые ВИР несли круглосуточное дежурство у коллекции семян зерновых культур. Это был беспримерный подвиг. В то тяжелейшее время бесценное богатство, из которого российские, а также зарубежные селекционеры черпают генетический материал для создания новых сортов и гибридов, в основном было сохранено. Об этом нельзя забывать, потому что в каждом куске сегодняшнего хлеба есть частица тех блокадных зерен.  [c.112]

Для соединения заклепками в деталях делают (пробивают, сверлят) отверстия диаметром, большим диаметра заклепки на 0,2. .. 1,0 мм. Величина этой разницы диаметров определяется стандартами и нормалями. При этом в приборостроении и точном машиностроении она берется меньше, чем в тяжелом машиностроении. Если заклепки вставляют в холодном состоянии, то разница в диаметрах берется в пределах до 0,5 мм, а если в горячем — то до, 0 мм (иногда и больше).  [c.192]

Следует упомянуть о проведенном в ноябре 1956 г. совещании конструкторов тяжелого машиностроения, на котором среди других был заслушан доклад на тему Возможные упрощения изображения на чертежах без потери технической ясности их содержания , поступившей от Центрального конструкторского бюро металлургического машиностроения. В этом докладе был затронут ряд положений, получивших свое подтверждение в решениях совещания и учтенных в разделе Условности и упрощения проекта стандарта Изображения — виды, разрезы, сечения . Вопрос об упрощении в чертежах связывали с сокращением срока составления проектов. Поэтому все, что имело то или иное отношение к возможной экономии времени, приковывало к себе внимание.  [c.173]

Обычно при обработке таких тяжелых деталей затрачивается много машинного времени и времени на установку и выверку детали на станке. Наиболее рациональным методом, требующим в несколько раз меньше времени, является обработка таких деталей в неподвижном состоянии, для чего они устанавливаются на обработанной металлической плите переносные агрегатные станки, устанавливаемые на той же плите вокруг обрабатываемой детали, обрабатывают одновременно несколько ее поверхностей методом концентрации операций.  [c.122]

Вследствие высокой режущей способности рекомендуется широкое применение металлокерамических твердых сплавов и минералокерамических сплавов.. Для обработки стали применяют титановольфрамовые твердые сплавы. Так как повышение содержания титана повышает одновременно с режущей способностью хрупкость сплава, то при тяжелых условиях работы (обдирка с переменным припуском, наличие ударной нагрузки, недостаточная жесткость системы станок — приспособление — инструмент — деталь) применяют сплав с низким содержанием титана, а для отделочных работ — с высоким. В случае выкрашивания титановольфрамовых сплавов при обработке сталей возможно применение вольфрамовых сплавов.  [c.134]


Негладкой наклонной плоскости придан такой угол а наклона к горизонту, что тяжелое тело, помещенное на эту плоскость, спускается с той постоянной скоростью, которая ему сообщена в начале движения. Определить коэффициент трения f.  [c.53]

Тяжелая точка поднимается по негладкой наклонной плоскости, составляющей угол а = 30° о горизонтом. В начальный момент скорость точки равнялась Уо 15 м/с. Коэффициент трения / = 0,1. Какой путь пройдет точка до остановки За какое время точка пройдет этот путь  [c.203]

Определить движение тяжелого шарика вдоль воображаемого прямолинейного канала, проходящего через центр Земли, если принять, что сила притяжения внутри земного шара пропорциональна расстоянию движущейся точки от центра Земли и направлена к этому центру шарик опущен в канал с поверхности Земли без начальной скорости. Указать также скорость шарика при прохождении через центр Земли и время движения до этого центра. Радиус Земли равен / = 6,37-10 м, ускорение силы притяжения на поверхности Земли принять равным g — = 9,8 ш/сР-.  [c.207]

Тяжелая точка массы т падает из положения, определяемого координатами Хо = О, уо = А при = О, под действием силы тяжести (параллельной оси у) и силы отталкивания от оси у, пропорциональной расстоянию от этой оси (коэффициент пропорциональности с). Проекции начальной скорости точки на оси координат равны Vx = Уо, Vy = 0. Определить траекторию точки, а также момент времени 1 пересечения оси х.  [c.214]

Главную часть установки для испытания материалов ударом составляет тяжелая стальная отливка М, прикрепленная к стержню, который может вращаться почти без трения вокруг неподвижной горизонтальной оси О. Пренебрегая массой стержня, рассматриваем отливку М как материальную точку, для которой расстояние ОМ = 0,981 м. Определить скорость и этой точки в нижнем положении В, если она падает из верхнего положения А с ничтожно малой начальной скоростью.  [c.223]

Сферический маятник состоит из нити ОМ длины /, прикрепленной одним концом к неподвижной точке О, и тяжелой точки М веса Р, прикрепленной к другому концу нити. Точку М отклонили из положения равновесия так, что ее координаты  [c.228]

Гладкое тяжелое кольцо М веса Q может скользить без трения по дуге окружности радиуса R см, расположенной в вертикальной плоскости. К кольцу привязана упругая нить MOA, проходящая через гладкое неподвижное кольцо О и закрепленная в точке А. Принять, что натяжение нити равно нулю, когда кольцо М находится в точке О, и что для вытягивания нити на 1 см нужно приложить силу с. В начальный момент кольцо находится в точке  [c.229]

Тяжелая точка М массы т движется по внутренней поверхности круглого цилиндра радиуса г. Считая поверхность цилиндра абсолютно гладкой и ось цилиндра вертикальной, определить давление точки на цилиндр. Начальная скорость точки равна по величине оо и составляет угол а с горизонтом.  [c.231]

Составить дифференциальное уравнение малых колебаний тяжелой точки А, находящейся на конце стержня, закрепленного шарнирно в точке О, считая силу сопротивления среды пропорциональной первой степени скорости с коэффициентом пропорциональности а, и определить частоту затухающих колебаний, Еес точки А равен Р, коэффициент жесткости пружины с, длина стержня , расстояние ОВ = Ь. Массой стержня пренебречь. В положении равновесия стержень горизонтален. При каком значении коэффициента а движение будет апериодическим  [c.251]

Трубка АВ вращается с постоянной угловой скоростью (О вокруг вертикальной оси СО, составляя с ней неизменный угол 45°. В трубке находится тяжелый шарик М. Определить движение этого шарика относительно трубки, если начальная скорость его равна нулю и начальное расстояние от точки О равно а. Трением пренебречь.  [c.260]

Во сколько раз надо увеличить угловую скорость вращения Земли вокруг своей оси, чтобы тяжелая точка, находящаяся на поверхности Земли на экваторе, не имела бы веса Радиус Земли R = 6370 км.  [c.260]

Тяжелая точка может двигаться без трения по вертикальному проволочному кольцу, которое вращается вокруг своего вертикального диаметра с постоянной угловой скоростью м. Радиус кольца равен R. Найти положение равновесия точки и определить, как будет двигаться точка, если в положении равновесия она получит малую скорость о по касательной вверх.  [c.261]


Тяжелый круглый цилиндр А массы т обмотан посредине тонкой нитью, конец которой В закреплен неподвижно. Цилиндр падает без начальной скорости, разматывая нить. Определить скорость оси цилиндра, после того как эта ось опустится на высоту к, и найти натяжение Т нити.  [c.309]

Определить частоты малых колебаний тяжелой материальной точки, колеблющейся около положения равновесия на гладкой поверхности, обращенной вогнутой стороной кверху главные радиусы кривизны поверхности в точке, отвечающей положению равновесия, равны р1 и рг.  [c.422]

Определить частоты малых колебаний тяжелой материальной точки около ее положения равновесия, совпадающего с наиболее низкой точкой поверхности, вращающейся с постоянной угловой скоростью (О вокруг вертикальной оси, проходящей через эту точку. Главные радиусы кривизны поверхности в ее нижней точке р и Р2.  [c.422]

Изучение циклов с подводом теплоты при постоянном объеме показало, что для повышения экономичности двигателя, работающего по этому циклу, необходимо применять высокие степени сжатия. Но это увеличение ограничивается температурой самовоспламенения горючей смеси. Если же производить раздельное сжатие воздуха и топлива, то это ограничение отпадает. Воздух при большом сжатии имеет настолько высокую температуру, что подаваемое топливо в цилиндр самовоспламеняется без всяких специальных запальных приспособлений. И наконец, раздельное сжатие воздуха и топлива позволяет использовать любое жидкое тяжелое и дешевое топливо — нефть, мазут, смолы, каменноугольные масла и пр.-  [c.265]

Итак, натяжение в каждой точке тяжелой однородной нити равно весу отрезка той же нити, длина которого равна ординате этой тСчки.  [c.316]

Гюйгенс, которому мы обязаны предшествующими результатами, осуществил на практике циклоидальный маятник. Известно, что эволюта циклоиды есть циклоида, равная первоначальной и смещенная на длину ак в горизонтальном напразлении и на высоту 2а вверх. Центр кривизны циклоиды, представляющей собой эвольвенту, в нижней ее точке находится в точке возврата эволюты, и соответствующий радиус кривизны равен 4а. Поэтому если подвесить тяжелую точку М на нити длиной 4а к точке возврата О эволюты (фиг. 32) и заставить ее колебаться так, чтобы нить попеременно навертывалась на обе дуги эволюты, оканчивающиеся в точках возврата эвольвенты, то тяжелая точка будет двигаться точно по эвольвенте. Однако конструкция циклоидального маятника оказывается слишком сложной, чтобы представляемые им теоретические преимущества заставили предпочесть его в практических применениях простому маятнику.  [c.192]

Износ двигателяи его экономичностьв значительной мере зависят от наличия в бензинах тяжелых фракций углеводородов. Их количество характеризуется температурами конца кипения и перегонки 90 % бензина. Если эти температуры высокие, то тяжелые фракции не успевают испариться во впускной системе и поступают в цилиндры двигателя в жидком виде. В результате часть их не успевает сгорать и экономичность двигателя ухудшается. Тяжелые фракции бензина, осевшие на стенках цилиндра, смывают масло с трущихся поверхностей и ухудшают условия их смазки. Следствие этого — повышенный износ деталей цилиндропоршневой группы двигателя. Тяжелые фракции топлива попадают в картер двигателя и снижают вязкость масла, что также увеличивает износ двигателя. Несгоревшее в цилиндре топливо откладывается на поверхности камеры сгорания и поршней в виде нагара, который инициирует детонацию, калильное зажигание и вызывает другие нарушения в работе двигателя. Поэтому, чем меньше температура конца кипения бензина и перегонки его 90 %, тем лучше бензин с точки зрения его влияния на износ двигателя и экономичность. Для бензинов установлены нормы на температуры перегонки 90 % и конца кипения бензина для летнего бензина соответственно не выше 180 и 195 °С и для зимнего — не выше 160 и 185 °С.  [c.19]

Поэтому если ядра сближаются на радиус действия ядер-ных СИД, то тяжелые выеют скдонвость к распаду, а легкие — к слиянию. Общий ход трафика можво объяснить исходя из капельной модели ядра, а мелкие колебания рафика— из оболочечш модели (см. шше).  [c.246]

Если обрабатывается мягкий материал (дерево, пластмассы, ЦЕ етные металлы), или при обработке стали и чугуна применяются малые скорости резания и стружка имеет малое сечение, то в единицу времени на процесс резания затрачивается мало энергии. Если обработка происходит при больших скоростях резания, обрабатываются твердые металлы и стружка имеет большое сечение, то в этих случаях в единицу времени затрачивается много энергии. Механическая энергия в процессе резания превращается в тепловую, режущая кромка инструмента сильно нагревается (до красного каления) при тяжелых условиях резания. Для такого инструмента главное требование— сохранение твердости при длительном нагреве, т. е. сталь должна обладать красностойкостью.  [c.411]

На рис. 145 показаны конвекционные потоки, возникающие в называемой обычно неподвижной (неперемешиваемой) теплой воде вследствие охлаждения последней возле стенок сосуда, что делает ее более тяжелой и заставляет опускаться вниз, а на ее место поступает более теплая вода из-центральной части сосуда. Это самоперемешивание неподвижной жидкости можно наблюдать, если в ней имеются пылинки или другие мелкие частицы (например, волоски ваты) при пропускании через сосуд яркого света, например солнечного. При приближении температуры общей массы воды к комнатной эти конвекционные потоки ослабевают, но поддерживаются за счет охлаждения воды ее испарением с поверхности (скрытая теплота испарения воды = 539 кал/г). Если в сосуде не вода, а раствор, то вследствие испарения воды с поверхности происходит дополнительное (помимо охлаждения)  [c.208]


Решение задачи о характеристиках свободной струи, несущей твердые или капельно-жидкие примеси, с учетом описанной модели явления приведено в работе [5]. Сравнение расчета этих характеристик с экспериментальными данными [87] показало вполне удовлетворительную их сходимость. Согласно расчетам [5] запыленная струя становится уже и дально-бойнее не только тогда, когда в ней содержатся тяжелые примеси, но и тогда, когда чистая газовая струя распространяется в запыленном газовом потоке. Выше было отмечено, что если примесь не имеет начальной скорости (папрн.мер, когда газовая струя вытекает в спутный лоток газа большей плотности), то затухание скорости происходит быстре(, чем в незапы-ленном потоке, т. е. интенсивность расширения такой струи увеличивается с увеличением плотности спутного потока. Это кажущееся противоречие [5] объясняется тем, что в случае распространения газовой струи в запыленном потоке на степень расширения струи влияют два фактора с одной стороны, большая плотность окружающей среды, с увеличением которой степень расширения струи увеличивается, а с другой стороны, подавление турбулентности частицами, попадающими из внешнего потока в струю, которое с ростом концентрации частиц в потоке растет и, следовательно, уменьшает степень расширения струи. Согласно расчету, второй фактор оказывает более сильное влияние на степень расширения струи, чем плотность окружающей среды.  [c.317]

Рассмотрим несколько примеров. Допустим, что в аииарате с боковы.м входом запылевшого потока установлена плоская решетка с таким малым коэффициентом сопротивления р, при котором не обеспечивается достаточное растекание струн по сечению (рис. 10.40, а). Поток сосредоточен в одной иоловнне сечения, примыкающей к стенке корпуса аппарата, противоположной входу. Так как ири боковом входе струя перед решеткой резко поворачивается более чем на 90 вверх, то иод действием возникающих при этом центробежных сил наиболее тяжелые и крупные частицы пыли будут отбрасываться в сторону от центра кривизны траектории потока, т. е. к задней стенке аииарата. Поэтому кривая концентрации отличается от кривой распределения скоростей она имеет вблизи указанной стенки более резко выраженный максимум.  [c.318]

Аналогичное явление должно наблюдаться ири осевом (центральном) набегании струи на решетку с малым коэффициентом сопротивления (рис. 10,40, б). Центробежные силы, возникающие при растекании струи но решетке в направлении от оси к периферии, отклоняют наиболее тяжелые и крупные частицы в сторону оси потока. В результате максимум концентраций получится в центре сечения аииарата. То же самое наблюдается ири установке системы решеток (рис. 10.40, в). Следует отметить, что  [c.318]

Второй пример — случай подвода запыленного потока в батарейный циклон снизу вверх с последующим поворотом вбок под углом 90° (рис. 10.41). Когда пет направляющих устройств на повороте, поток сильно поджимается. Струя газа при входе в ка.меру грязного газа более узкая, чем струя, поступающая через входное отверстие ка.меры. Следовательно, скорость струи больше среднего ее значения но сечению входа. Но чем больше скорость запыленного потока, тем больше скорость движения взвешенных в нем частиц, и наиболее тяжелые частицы п[юдолжают движение к стенке, противоположной входу. В результате основная часть пыли транспортируется через последние ряды цпклон11ЫХ элементов, несмотря на то, что несущий их поток довольно равномерно распределен по всем циклонным элементам, поскольку величина коэффициента их сопротивления достаточно велика. Таким образом, характер распределения концентрации пыли и скоростей в рассматриваемом случае получается совершенно различным (рис. 10.41, а). В некоторых случаях при таких условиях большая часть пыли накапливается вблизи задиег стеикн камеры грязного газа , запирая при этом часть циклонных элементов.  [c.319]

Примечания, а — условия эксплуатац (и тяжелые нагрузка знакопеременная с ударами в обоих направлениях вибр ция большой частоты и амплитуды условия смазки (для подвижных соединетй) плохие поверхности невысокой твердости невысокая точность обработки, то ке в отношении соосности вала и втулки б — условия 9ксплуатацнн средние в--условия эксплуатации хорошие.  [c.84]

Основная неопределенность при реализации точки кипения неона связана с недостаточной точностью данных об изотопическом составе природного неона. В положении о МПТШ-68 редакции 1968 г. его состав определялся следующим образом 90,9 % °Не, 0,26 % Ые и 8,8 % Ne, что было основано на измерениях, проведенных в 1950 г. [60]. Выполненная позже работа [75] утверждает, что более вероятным является следующий состав естественного неона 90,5 % Ne, 0,26 7о 2 Ые и 9,26 % 2=Ме. МПТШ-68 редакции 1975 г. основывается на этих новых значениях. Присутствие тяжелых фракций в неоне естественного состава, т. е. Ne и N0, приводит к слабой зависимости давления от соотношения жидкой и паровой фаз и от направления процесса испарения или конденсации жидкого образца. Температура исчезновения паровой фазы названа точкой кипения, а температура исчезновения жидкой фазы — точкой росы. При увеличении количества неона в камере различие между точкой кипения (жидкость естественного состава) и точкой росы (пар естественного состава) составляет 0,4 мК. Существует, однако.  [c.160]

Разработка технологии имеет целью обеспечить оптимальные условия выполнения каждой отдельной операции и всего процесса в целом. Так как для разных типов сварных конструкций представления об оптимальности технологического процесса могут сильно отличаться, то соображения о рациональном построении процесса изготовления будут подробно рассматриваться в главах, посвянц-нных типовым сварным конструкциям. Однако требование экономии живого труда является общим. В Конституции СССР говорится о необходимости сокращения, а в дальнейшем и полного вытеснения тяжелого физического труда на основе комплексной мехапизации и автоматизации производства.  [c.10]

Определить движение тяжелой материальной точки, масса которой равна т, притягиваемой к неподвижному центру О силой, прямо пропорциональной расстоянию. Движение п[)оисходит в пустоте сила притяжения на единице расстояния равна k m в момент i = 0 х — а, i = О, у = О, у = О, причем ось Оу направлена по вертикали вниз.  [c.211]

Тяжелый однородный стержень длины I и массы ГП1 риж-иим концом опирается на шарнир и удерживается в вертикальном положении с помощью пружины жесткости с. К точке стержня, отстоящей от щарнира на расстоянии а, подвещен на нити длины г груз М массы П12. При вертикальном положении стержня пружина находится в ненапряженном состоянии и расположена горизонтально. При какой жесткости пружины стержень и груз могут соверщать малые колебания около вертикального положения Найти уравнение частот этих колебаний. Массой нити пренебречь, (иц/ + 2т.2а)  [c.424]


Смотреть страницы где упоминается термин Точка тяжелая : [c.37]    [c.240]    [c.554]    [c.265]    [c.402]    [c.206]    [c.316]    [c.376]    [c.499]    [c.294]   
Теоретическая механика Том 1 (1960) -- [ c.301 , c.324 ]



ПОИСК



Бесконечно малые колебания тяжелой точки около наинизшей точки поверхности

Бифуркационные множества и интегральные многообразия в задаче о вращении тяжелого твердого тела с неподвижной точкой

Вертикальное движение тяжелой точки в среде с сопротивлением, пропорциональным квадрату скорости

Влияние вращения Земли на падение тяжелой точки в пустоте

Геометрическая интерпретация рассмотренного С. В. Ковалевской случая движения тяжелого твердого тела около неподвижной точки

ДВИЖЕНИЕ ТЯЖЕЛОГО ТЕЛА ЕРАЩЕНИЯ, ЗАКРЕПЛЕННОГО В ОДНОЙ ИЗ ТОЧЕК ЕГО ОСИ Начальное вращение происходит вокруг оси тела

Движение без трения тяжелой точки по поверхности вращения с вертикальной осью

Движение изменяемого твердого тела (Уравнения Лиувилля) Обобщенная задача о движении неголономного шара Чаплыгина Движение шара по сфере Ограниченная постановка задачи о вращении тяжелого твердого тела вокруг неподвижной точки Неинтегрируемость обобщенной задачи Г. К. Суслова Движение спутника с солнечным парусом

Движение тяжелого твердого тела вокруг неподвижной точки

Движение тяжелого твердого тела около неподвижной точки

Движение тяжелого твердого тела с неподвижной точкой

Движение тяжелого твердого тела с неподвижной точкой, первые интеграл

Движение тяжелого тела вращения, закрепленного в одной из точек своей оси, при произвольных начальных условиях

Движение тяжелой материальной точки в пустоте

Движение тяжелой точки в пустоте

Движение тяжелой точки на поверхности вращения, оСь которой Ог вертикальна

Движение тяжелой точки по кривой, расположенной в вертикальной плоскости, при действии трения и сопротивления среды

Движение тяжелой точки по неподвижной кривой

Движение тяжелой точки по окружности, вращающейся вокруг вертикальной оси

Движение тяжелой точки по параболе, вращающейся вокруг вертикальной оси

Движение тяжелой точки, брошенной под

Задача о вращении тяжелого твердого тела с неподвижной точкой как возмущение случая Эйлера — Пуансо Переменные действие-угол

Задача о падении тяжелой точки в пустоте

Криволинейное движение. Тяжелая точка в пустоте и сопротивляющейся среде. Электрическая частица

Лекция первая (Задача механики. Определение материальной точки. Скорость. Ускорение или ускоряющая сила. Движение тяжелой точки. Движение планеты вокруг Солнца. Правило параллелограмма сил. Дифференциальные уравнения задачи трех тел)

Малые колебания тяжелого тела вокруг неподвижной точки. Сравнение результатов

Неинтегрируемость задачи о вращении несимметричного тяжелого твердого тела вокруг неподвижной точки Структура векового множества

ПОЛУВАРИНОВА-КОЧИНА. ОБ ОДНОЗНАЧНЫХ РЕШЕНИЯХ И АЛГЕБРАИЧЕСКИХ ИНТЕГРАЛАХ ЗАДАЧИ О ВРАЩЕНИИ ТЯЖЕЛОГО ТВЕРДОГО ТЕЛА ОКОЛО НЕПОДВИЖНОЙ точки

Параболическое движение тяжелой точки в пустоте

Приложение к задаче о вращении тяжелого твердого тела вокруг неподвижной точки

Приложение. Движение тяжелой точки в пустоте

РАВНОВЕСИЕ ПЛАВАЮЩИХ ТЕЛ Устойчивость равновесия тяжелого твердого тела, опирающегося на горизонтальную плоскость одной точкой

Свободное падение тяжелой точки

Тяжелая точка на поверхности гладкого

Тяжелое твердое тело, закрепленное в точке

Тяжелое тело, опирающееся на плоскость в нескольких точках и находящееся под действием только одной силы

Тяжелый симметричный волчок с одной неподвижной точкой

Упражнение. Относительное движение тяжелой точки, находящейся на идеально гладкой наклонной плоскости Р, которая вращается с постоянной угловой скоростью w вокруг вертикали

Уравнения движения тяжелого твердого тела вокруг неподвижной точки и их первые интегралы

у тяжёлые



© 2025 Mash-xxl.info Реклама на сайте