Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параллельная

Рис. 21. Системы с последовательным (а), параллельным (б) и смешанным соединением элементов (в) Рис. 21. Системы с последовательным (а), параллельным (б) и <a href="/info/354305">смешанным соединением</a> элементов (в)

Система с параллельным соединением элементов (рис. 21, б). Такая система выходит из строя только в случае отказа всех ее элементов. При условии, что отказы элементов статистически независимы, надежность всей системы будет [17]  [c.80]

Система со смешанным соединением элементов, в которой часть элементов соединены последовательно, а часть параллельно (рис. 21, в). В этом случае надежность всей системы будет  [c.80]

Все механизмы можно разделить на плоские и пространственные, У плоского механизма точки его звеньев описывают траектории, лежащие в параллельных плоскостях. У пространственного механизма точки его звеньев описывают неплоские траектории или траектории, лежащие в пересекающихся плоскостях.  [c.8]

Определить семейство и степень подвижности механизма шарнирного четырехзвенника (оси враш,ательных пар А, В, С w D параллельны).  [c.13]

Рис. и. Схематическое изображение зубчатой передачи а) схема вычерчена на плоскости, параллельной движению точек звеньев механизма, б) схема вычерчена на плоскости, перпендикулярной плоскости вращения звеньев механизма.  [c.16]

Построение плана ускорений ведем в такой последовательности (рис. 24, г). Строим решение первого векторного уравнения, указанного выше, для чего от полюса плана я откладываем отрезок (лЬ), изображающий ускорение ад, параллельно линии АВ. Длину (яй) выбираем равной (АВ) = 25 мм, т. е. строим план в масштабе кривошипа, при этом масштабы планов ускорений и их аналогов соответственно будут равны  [c.46]

Находим радиус кривизны траектории точки D, Через точку D (рис. 24, б) проводим линию тт, параллельную отрезку (pd) jna плане скоростей (рис. 24, в), — это будет направление касательной к траектории точки D. Линия (т) ]), проведенная перпендикулярно линии (тт), является нормалью к этой же траектории. На ней ра полагается центр кривизны 0 траектории точки D. Проектируем вектор ускорения точки D, отрезок (я ) (рис. 24, г), на направление нормали к траектории точки D. Получим отрезок (ял ,), соответствующий нормальному ускорению  [c.47]

Строим решение первого векторного уравнения, указанного выше. От полюса р плана (рис. 25, в) откладываем отрезок (рЬ), изображающий скорость точки В. Длину этого отрезка принимаем равной (рЬ) = (АВ) = 25 мм, т. е. план строим в масштабе кривошипа. Через точку Ь проводим направление скорости Vg д — линию, параллельную Переходим к построению решения второго векторного уравнения, указанного выше. Надо отложить вектор скорости точки С, но так клк модуль его равен нулю, то конец его с помещаем в полюс плана р и из точки р проводим направление скорости f — линию, перпендикулярную СВ. Пересечение ее с ранее проведенной линией, параллельной СВ, дает конец вектора скорости Vg —точку 63. Точку d — конец вектора скорости точки D— находим по правилу подобия из соотношения  [c.49]


D (оно направлено параллельно линии ED от точки Е к точке D)  [c.51]

Далее через точку проводим направление ускорения а д (линию, перпендикулярную ED) и переходим к построениям, соответствующим второму векторному уравнению, указанному выше. В точке я помещаем точки и k, так как модули ускорений и равны нулю. Из точки п проводим направление ускорения а с (линию, параллельную хх) до пересечения с линией, ранее проведенной из течки Пдд. Точка пересечения е является концом вектора ускорения точки Е, т. е. ускорения а . Располагаем в полюсе плана точку а и на этом заканчиваем построение плана ускорения механизма.  [c.51]

Все эти задачи решаются путем такого подбора масс противовесов и их положений на звеньях механизма, при котором силы инерции этих противовесов оказывают на опоры звеньев воздействия, равные и противоположные воздействиям, создаваемым силами инерции звеньев механизма. В случаях, когда силы инерции располагаются в параллельных плоскостях, перед нами предстают задачи на равновесие пространственной системы сил.  [c.85]

ПОТОКОМ воздуха, подаваемого параллельно электроду под дав-л81тием 4—6 ат.  [c.78]

Для сварки также часто применяют газовые лазеры, рабочим телом которых является смесь газов. Такие лазеры возбуждаются электрически51 разрядом. Типичной конструкцией такого лазера является заполненная смесью газов трубка, ограниченная с двух сторон строго параллельными зеркалами непрозрачным и полупрозрачным (рис. 89, б). В результате электрического разряда между введенными в трубку электродами возникают быстрые электроны, которые переводят газовые молекулы на возбужденные уровни. Возвращаясь в основное состояние, эти молекулы образуют кванты света совершенно так же, как и в твердотельном лазере.  [c.167]

Построение плана скоростей ведем в такой последовательности (рис. 24, в). Строим решение первого векторного уравнения, указанного выше от полюса р откладываем отрезок рЩ. изобряжяюшнй гкпрпгтц тпцум д перпендикулярно линии АВ и в соответствии с направлением вращения звена АВ, причем длину отрезка (рй) выбираем равной (АВ) = 25 мм, т. е. строим план в масштабе кривошипа из точки Ь проводим направление Скорости — линию, перпендикулярную ВС. Переходим к построению решения второго векторного уравнения, указанного выше из точки р надо было бы отложить скорость, но она равна нулю, поэтому точку С4 совмещаем с точкой р из точки или, что то же, р проводим направление скорости — линию, параллельную Ах, до пересечения с линией, проведенной перпендикулярно ВС, и получаем точку с — конец вектора скорости точки С. Помещаем в полюс плана точку а и на этом заканчиваем построение плана скоросгей для всего механизма. Скорость точки D находим по правилу подобия конец вектора этой скорости должен лежать на линии (Ьс) и делить отрезок (Ьс) в том же отношении, в каком точка D делит отрезок ВС, т. е.  [c.45]

I равленное параллельно СВ — касательное ускорение той же точки в том у<е движении звена ВС, равное a ( g = направленное перпендикулярно вс-. Од — ускорение точки D, равное нулю o"q— нормальное ускорение точки  [c.54]

Мы ограничимся рассмотрением случаев, когда звено совершает плоскопараллельное движение и имеет плоскость материальной симметрии, параллельную плоскости его движения. При этом точкой приведения сил инерции авена целесообразно брать его центр масс (рис. 45), так как упрощается выражение момента инерционной пары сил — главного момента сил инерции, что то же, инерционного момента. Он оказывается равным М = -1 г, (9.2)  [c.78]

Инерционный момент М имеет размерность [кгже/С ] = [нм]. Плоскость, в которой он действует, параллельна плоскости движения звена он направлен в сторону, противоположную направлению углового ускорения звена (рис. 45).  [c.78]

При решении задач (192—196) первой группы центробежные силы инерции элементарных масс вращающегося звена заменяются, условно, двумя силами инерции, расположенными в двух произвольно выбранных параллельных плос-ксстях, перпендикулярных оси вращения звена. Эти плоскости называются плоскостями исправления.  [c.85]


М5. Горизонтальный вал, вращающийся со скоростью п = = (lOOO об/мин, нагружен двумя равными параллельными радналь-ныли силами Р, которые равны Р == 300 н. Коэффициент трения между цапфами вала и подшипниками / = 0,08, диаметр цапф равен d = 60 мм. Определить мощность N, затрачиваемую на преодоление трения в опорах вала.  [c.101]


Смотреть страницы где упоминается термин Параллельная : [c.51]    [c.52]    [c.129]    [c.136]    [c.167]    [c.178]    [c.179]    [c.80]    [c.46]    [c.46]    [c.47]    [c.49]    [c.49]    [c.50]    [c.50]    [c.50]    [c.50]    [c.51]    [c.53]    [c.54]    [c.55]    [c.55]    [c.55]    [c.55]    [c.62]    [c.64]    [c.66]    [c.87]    [c.87]    [c.88]    [c.98]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте