Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральные методы решения задач об излучении

ИНТЕГРАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ОБ ИЗЛУЧЕНИИ  [c.240]

Метод резольвент нашел широкое применение при решении задач излучения. Суш,ность его заключается в том, что решение исходного интегрального уравнения ищется через резольвентную форму, т. е. через вспомогательное уравнение.  [c.125]

В одной книге невозможно охватить все вопросы, связанные с проблемой излучения и дифракции звука. В частности, сюда не вошли такие важные вопросы, как дифракция на решетках, излучение звука из открытого конца волновода. Этим проблемам посвящен ряд фундаментальных работ, например [10, 71]. Поэтому здесь рассмотрены лишь некоторые основные вопросы, которые не нашли достаточного полного освещения в книгах по акустике. К ним относятся, например, методы, связанные с применением интегральных уравнений для решения задач излучения и дифракции волн телами сложной формы.  [c.3]


К аналитическим методам исследования лучистого переноса относится еще резольвентный метод 17-11). В этом методе решения интегральных уравнений представляются через так называемую резольвенту излучения, откуда исходит и его название. Тогда вместо решения интегральных уравнений для различных потоков излучения требуется найти лишь решение уравнения для резольвенты, что существенно облегчает задачу.  [c.379]

Точное решение задач применительно к указанным условиям основывается на интегральных уравнениях излучения, откуда следует и название метода. Интегральные уравнения в 17-9 получались путем-предельных переходов из алгебраических.  [c.404]

Точные аналитические решения интегральных уравнений ( 17-10) получены лишь применительно к (отдельным) частным задачам [Л. 163]. В общем случае прибегают к различным приближенным методам решения [Л. 1, 163, 178]. К одному из них относится метод последовательных приближений (итераций). Рассмотрим этот метод для произвольной геометрической замкнутой системы серых тел с заданным полем распределения температуры и оптических свойств на ее граничной поверхности. Требуется найти потоки различных видов излучения.  [c.406]

В основу решения поставленной задачи может быть положено уравнение переноса лучистой энергии (дифференциальный метод) или интегральное уравнение излучения (интегральный метод).  [c.427]

Однако специфика рассмотренных интегральных уравнений радиационного теплообмена для общего случая заключается в том, что их ядра я ряд параметров заранее не известны и могут быть найдены лишь приближенно. В то же время В классической теории интегральных уравнений Л. 110—116] их ядра и параметры должны быть заданными функциями. Из математики известен целый ряд методов решения интегральных уравнений, которые используются при исследовании процессов радиационного теплообмена. Все эти методы являются приближенными. Они делятся на аналитические и численные, причем, как правило, аналитические приближенные методы являются достаточно эффективным средством лишь для наиболее простых одномерных задач теплообмена излучением.  [c.209]

Обобщенный зональный метод, описанный в разд. 5.2, приводит к необходимости решения системы интегральных уравнений для плотностей потоков эффективного излучения. В настоящем разделе будет дан краткий обзор методов решения интегральных уравнений типа уравнения Фредгольма, к которым сводится эта задача. Для более детального ознакомления с этим вопросом читателю следует обратиться к работам [1—3].  [c.201]


В 27 и 28 применен 5-метод, который сводит решение задачи с излучением к решению вещественного интегрального уравнения по поверхности тела, и для нескольких двумерных открытых резонаторов дано численное решение этого уравнения. Найдено затухание вытекающих волн в волноводах нескольких форм с полупрозрачными стенками или с продольной щелью. В этом методе не нужно предварительно решать задачу о резонаторе той же формы с идеально проводящими стенками, находить функцию Грина внешней области (что весьма сложно) и т. д. Поэтому в этих параграфах задачи о резонаторах и волноводах со щелями решены без обычного ограничения, состоящего в том, что снаружи щель дополнена бесконечным фланцем и что внутренняя область резонатора очень проста.  [c.201]

Сопротивление излучения круглого поршня, расположенного в акустически мягком концентрическом экране конечной высоты. Решение задачи об излучении звука круглым поршнем нулевой толщины, вставленным в абсолютно жесткий концентрический экран, может быть получено методом разделения переменных в сплющенной эллипсоидальной системе координат и применением парных интегральных уравнений (см. п. 1.3.6). Однако задача для абсолютно мягкого экрана конечной толщины такими способами уже не решается. Ниже приведены результаты вычисления активной составляющей импеданса излучения для модели, показанной на рис. 2.21, полученные решением интегрального уравнения (2.18). Здесь Ь - радиус экрана.  [c.108]

При первом подходе для определения локальных плотностей излучения непосредственно используется метод алгебраической аппроксимации интегральных уравнений радиационного теплообмена, изложенный в гл. 7. Для этого в исследуемой системе выбирается определенное число узловых точек и исходное интегральное уравнение аппроксимируется системой линейных алгебраических уравнений, число которых равно числу узловых точек. Этот метод определения локальных плотностей излучения был использован при решении различных задач радиационного теплообмена и дал положительные результаты [Л. 60, 354, 355, 367].  [c.220]

Изложенная здесь задача лучистого теплообмена рассматривалась ранее. Е. Эккертом, который, решая ее другим методом, получил другое по виду расчетное уравнение [Л. 34], Его уравнение после некоторых преобразований может быть приведено к полученному здесь выражению (17-17). Приближенные решения рассматриваемой задачи при учете селективности излучения газов через интегральную поглощательную способность среды приведены в [Л. 194, 97, 65].  [c.304]

В этой статье мы рассмотрим применение метода граничных интегральных уравнений (ГИУ), т. е. метода, согласно которому задача, заключающаяся в решении некоторого основного уравнения (обычно уравнения в Частных производных), справедливого в данной области при некоторых заданных граничных условиях, сводится к решению интегрального уравнения, которое относится лишь к границе области и учитывает граничные условия непосредственно. Преимущество такого преобразования заключается в том, что размерность задачи уменьшается на единицу, например трехмерное уравнение в частных производных сводится к двумерному интегральному уравнению. Хотя решение интегрального уравнения определяет искомые величины лишь на границе области, решение во внутренних точках, если это необходимо, можно получить при помощи квадратур. Иллюстрация этого подхода к задачам акустического излучения и рассеяния дана в работе [1]. Следует подчеркнуть, что мы не рассматриваем здесь применение метода интегральных преобразований, согласно которому пространственные координаты преобразуются к новым трансформированным переменным, задача решается в трансформированном пространстве и полученное решение преобразуется обратно к исходному координатному пространству.  [c.18]

На основе такой общей постановки проведено обобщение и уточнение теоретических методов расчета радиационного теплообмена. Изложены дифференциальные методы расчета теплообмена излучением дифференциально-разностное и диффузионное приближения, приближение радиационной теплопроводности, тензорное приближение и приближение Милна — Эддингтона. Далее на этой же о снове рассмотрены интегральные уравнения теплообмена излучением и методы алгебраического приближения. Рассмотренные теоретические методы проиллюстрированы решением ряда задач, имеющих практическое значение.  [c.89]


Поиски эффективных путей решения уравнений радиационного теплообмена привели к созданию различных приближенных методов расчета. Все эти методы исходят из рассмотренного в гл. 3 уравнения переноса излучения с соответствующими граничными условиями к нему. Проведя то или иное интегрирование уравнения переноса излучения и граничных условий, можно получить либо дифференциальные, либо интегральные уравнения, описывающие процесс радиационного теплообмена в различных постановках. При этом в результате интегрирования уравнения переноса и граничных условий по телесному углу в получаемых дифференциальных и интегральных уравнениях в качестве неизвестного фигурирует уже не интенсивность излучения, а различные виды объемных и поверхностных плотностей излучения. Одновременно с этим в этих уравнениях появляются различные коэффициенты переноса, зависящие от распределения интенсивности излучения по различным направлениям, которое заранее неизвестно. Поэтому в отношении этих коэффициентов переноса принимаются те или иные допущения, вследствие чего такие расчетные методы и носят название приближений. Точность, с которой можно оценить неизвестные заранее коэффициенты переноса, определяет собой погрешности приближенных методов. Следует, однако, заметить, что в принципе, сочетая уравнения приближенных методов и интегральное выражение для интенсивности излучения (3-26), можно итерационным путем получить решение задачи с любой степенью точности. К тому же, как показывает анализ, неизвестные коэффициенты переноса во многих случаях являются сравнительно слабоизме-няющимися функциями и их можно оценить заранее с приемлемой точностью. Исторически первым был соз-  [c.113]

Одновременно с этим следует отметить, что в матема-тичбок ом отно шенйи интегральные уравнения ipawiHauiHOH-ного теплообмена отличаются существенной сложностью и их приближенные аналитические решения получены лишь для одномерных задач с введением ряда упрощающих допущений (постоянство радиационных характеристик, изотропное рассеяние в объеме и на граничной поверхности, неселективные (серые) среда и поверхность излучающей системы]. В общем же случае система интегральных уравнений теплообмена излучением содержит ряд заранее неизвестных величин (ядра интегральных ураинений, поглощательная и отражательная способность граничной поверхности, средние по спектру коэффициенты поглощения и рассеяния среды). Эти величины являются функционалами температурных полей в объеме и на поверхности и могут быть определены лишь с той или иной степенью приближения. Поэтому методы решения интегральных уравнений теплообмена излучением в общем случае по аналогии с различными дифференциальными методами можно рассматривать как своего рода интегральное приближение.  [c.190]

Задачи лучистого теплообмена. Этот класс объединяет все задачи лучистого теплообмена внутри газов, между газами и твердыми телами, между твердыми телами. Наиболее сложная часть задач данного класса — задачи излучения газов — связана с рен1ением интегродифференциальных уравнений теплообмена. Используются численные методы, разработанные для решения задач пограничного слоя и дополненные интегральными методиками (по частотам и простзанству) расчета оптических свойств среды [8]. В большом числе практически важных задач лучистый теплообмен достаточно учитывать только в граничных условиях для уравнения энергии. Это случаи, когда лучистый поток без изменений идет через оптически прозрачную среду, и тогда рассмотренные выше методы поиска решений применимы и к задачам конвективного теплообмена с лучистым потоком теплоты.  [c.188]

В работах [9—12] этот метод был использован для решения задач теплообмена излучением в плоском слое серой среды. В [13, 14] метод Кэйса был использован для нахождения решения системы Л/ интегральных уравнений, получающихся при рассмотрении задачи о теплообмене излучением в несерой среде  [c.378]

Авторы работ [24, 25] использовали соответственно метод единичного возмущения и приближенный интегральны - метода для исследования влияния излучения на теплробмен при свободной ламинарной конвекции на вертикальной пластине, а в [26] использован метод разложения по собственным функциям для получения точного решения этой задачи с учетом рассеяния.  [c.525]

Влияние излучения на теплообмен при ламинарной свободной конвекции на вертикальной пластине для поглощающей и излучающей жидкости в приближении оптически толстого слоя было и JJeдoвaнo в работе.[24] с помощью метода единичного возмущения. В [25] рассмотрена аналогичная задача для случаев как оптически тонкого, так и оптически толстого слоя. Для решения уравнения энергии использовался приближенный интегральный метод. Авторы работы [26] рассмотрели задачу сложного теплообмена для поглрщающей, излучающей и изотропно рассеивающей жидкости. Радиационная часть задачи решалась ими точно с помощью метода разложения по собственным функциям. В этом разделе будет дана формулировка задачи о свободной конвекции на вертикальной пластине при наличии излучения, описаны методы решения и обсуждены некоторые результаты.  [c.563]

Значительное упрощение в решении задач лучистого теплообмена получается в результате применения зонального метода расчета. Сущность этого метода заключается в том, что излучающую систему paздe ляют на отдельные зоны паверхности, а в случае поглощающей и излучающей среды и на объемные зоны. Принимается, о для каждой зоны поверхности поглощательные способности, температуры и плотности отраженного (или эффективного) излучения одинаковы во всех точках поверхности. Для объемных зон принимают постоянными в объеме зоны коэффициенты поглощения среды и температуры. Задачу обычно решают для нерассеивающей-среды с допущением справедливости закона Ламберта для собственного и отраженного излучений поверхности. Неточности, которые возникают в результате принятых допущений, уменьшаются при увеличении числа зон, на которые разделена излучающая система. Однако увеличение числа зон значительно увеличивает объем необходимых расчетов. В пределе при дроблении системы на бесконечное число бесконечно малых элементов решение получается совершенно точным, а уравнения зонального метода переходят при этом в интегральные.  [c.197]


Разработка общей теории зонального метода расчета началась с 1935 г. В статье Г. Л. Поляка [112] решение задачи зональным методом строилось на основе системы уравнений, в которых в качестве неизвестных и заданных величин приняты плотности результирующего и собственного излучений. В статье В. Н. Тимофеева [113] зональный метод рассмотрен на основе системы уравнений, в которых в качестве неизвестных взяты величины эффективного излучения. Наиболее полно,основы зонального метода расчета лучистого теплообмена рассмотрены в работах Ю. А. Суринова [70 114—124], который рассматривает зональный метод как частный случай расчета с помощью интегральных уравнений. Приводимое ниже описание зонального метода расчета лучистого теплообмена сделано на основе работ Ю. А. Суринова.  [c.201]

Остановимся подробнее на получении системы интегро-функциональ-ных уравнений контактной задачи. Использование принципа суперпозиции предполагает возможность получения аналитического решения краевой задачи динамической теории упругости с однородными граничными условиями в напряжениях для составляющих многослойную область с каноническим включением элементов. Таковыми являются однородный упругий слой, однородное упругое полупространство, полость в безграничном пространстве и упругое включение, граница которого тождественна границе полости. Решение задач для однородного слоя (полупространства) строится методом интегральных преобразований с использованием принципа предельного поглощения и может быть получено в виде контурного несобственного интеграла [2,4,14]. В зависимости от постановки задачи (пространственная, плоская, осесимметричная) получаем контурные интегралы типа обращения преобразования Фурье или Ханкеля [16]. Решение задачи для пространства с полостью, описываемой координатной поверхностью в ортогональной криволинейной системе координат, получаем в виде рядов по специальным функциям (сферическим, цилиндрическим (Ханкеля), эллиптическим (Матье)) [17]. При этом важно корректно удовлетворить условиям излучения, для чего можно использовать принцип излучения. Исключение составляет случай горизонтальной цилиндрической полости при исследовании пространственной задачи. Здесь необходимо использовать метод интегральных преобразований Фурье [16] вдоль образующей цилиндра и принцип предельного поглощения [3] для корректного удовлетворения условиям излучения энергии вдоль образующей.  [c.312]

Излагаемый в этом параграфе вариант метода применйм при решении задач дифракции в открытых системах. В нем вспомогательная однородная задача оказывается вещественной и может быть сведена к вещественному интегральному уравнению, если в задаче дифракции присутствуют только потери на излучение. Это связано со следующей закономерностью, уже обсуждавшейся для закрытых задач. А именно, при наличии потерь только одного типа соответствующую вспомогательную задачу всегда можно сделать вещественной, если вводить собственное значение именно в той области, где эти потери присутствуют, точнее, если вводить собственное значение через параметр задачи дифракции, ответственный за эти потери. В рассматриваемом варианте собственное значение однородной задачи (которая соответствует задаче дифракции с потерями только на излучение) мы введем через условия для собственной функции на бесконечности. Физический смысл этих условий состоит в том, что существует как сходящаяся из бесконечности собственная волна, так и рассеянная телом собственная волна. Угловые зависимости сходящейся и расходящейся волн, определяемые формой и свойствами облучаемого тела, должны совпадать (с точностью до комплексного сопряжения). В качестве собственных значений принимаются отношения амплитуд рассеянных и приходящих  [c.125]

В книге излагается теория переноса монохроматического излучения, изотропного и анизотропного (глава 2), и излз ения в спектральной линии с полным или частичным перераспределением по частоте (глава 4). Геометрия рассеивающих сред предполагается плоской. Рассматриваются бесконечная и полубесконечная среды, а также плоский конечный слой. Подробно излагается аналитическая теория, в том числе точные, асимптотические и приближенные методы решения модельных задач. В отдельную главу 3 выделен резольвентный метод, позволяющий найти точные выражения для основных функций, характеризующих поля излучения, и асимптотики этих функций. Дается представление о некоторых распространенных численных методах, В последней главе 5 рассматриваются задачи об определении интегральных характеристик полей излучения, таких как среднее число рассеяний, о рассеянии в молекулярных полосах, с частичным перераспределением по частоте, а также с учетом поляризации и движения рассеивающей среды.  [c.9]

ДОЭ, согласованных с поперечно-модовым составом лазерного излучения, может быть с успехом использован для измерения поперечно-модового состава излучения и восстановления амплитудно-фазового распределения в его поперечном сечении. Кроме того, разработка, методов синтеза моданов дает значительную информацию о возможных подходах к решению задачи синтеза дифракционных оптических элементов, формирующих произвольные амплитудно-фазовые распределения. В этой связи интересно отметить, что вопрос о приоритете точности формирования моды или энергетической эффективности модана решался каждый раз исходя из снещ1-фики конкретной задачи, будь то построение волоконно-оптической линии связи или разработка волоконно-оптического датчика давления. Поэтому был разработан определенный инструментарий численных методов, позволяющий находить необходимый компромисс в каждом конкретном случае. Этот подход вполне может быть обобщен на расчет ДОЭ, формирующего произвольное амплитудно-фазовое распределение. Обобщая вышесказанное, можно сказать, что дифракционные оптические элементы, благодаря свор1м уникальным характеристикам, вместе с элементами волноводной и интегральной оптики формируют элементную базу высокоэффективных оптических и оптико-электронных систем сбора, обработки и передачи информации.  [c.466]

В 1953 г. Суриновым был предло/]>он зональный метод расчета теплообмена в топочных камерах [60], основывающийся на двух интегральных уравнениях, описывающих теплообмен излучением элемента, находящегося в объеме топочной камеры или на ограничивающей его поверхностн. Согласно этому методу топка разбивается на т объемных и п поверхностных зон. При этом предполагается, что в пределах зоны температура, а такл е излучательные характеристики среды и поверхностей постоянны. Общий подход к решению рассматриваемой задачи по Суринову заключается в следующем. Записывается выраи енис для результирующего излучения -й зоны, которое имеет вид  [c.73]

Основное внимание в монографии уделяется явлению рассеяния оптического излучения и решению соответствующих обратных задач применительно к дистанционному оптическому зондированию атмосферы. В ней обобщаются результаты исследований, по--лученные авторами и их сотрудниками в последние годы по методам интерпретации оптических измерений. Именно явление светорассеяния в первую очередь определяет то, что принято понимать под оптикой атмосферы [27]. С другой стороны, оно лежит в основе дистанционных методов исследования полей физических и оптических параметров атмосферы. В монографии значительное место отводится построению эффективных алгоритмов оперативной обработки и интерпретации оптической информации, которая может быть получена с использованием таких измерительных систем, как спектральные радиометры, многочастотные лидары, по-.ляризационные нефелометры, спектральные фoтoмeтpJ5I, установленные на космических платформах и т. п., а также измерительных комплексов, которые могут быть составлены из указанных оптических систем. Это, по мнению авторов, должно способствовать олее широкому использованию методов решения обратных задач светорассеяния в практике атмосферно-оптических исследований. Что же касается математических аспектов теории интерпретации косвенных измерений, которые необходимо сопутствуют любому исследованию по обратным задачам, то их изложение в основном дается в краткой форме и по возможности элементарно. Во многих случаях, где это оказывалось возможным, изложение основного материала сопровождалось численными примерами. В тех разделах, где речь идет о некорректных задачах, широко используется известная аналогия между линейным интегральным уравнением и линейной алгебраической системой. Поэтому для большей ясности в понимании и прочтении формульного материала интегральные операторы во многих местах можно заменять соответствующими матричными аналогами. В целом содержание монографии достаточно замкнуто и не требует, по мнению авторов, излишне частого обращения к дополнительной литературе. Вместе с тем авторы не гарантируют легкого чтения всех без исключения разделов монографии. В ряде мест естественно требуется определенная проработка и осмысление материала, особенно для той категории читателей, которая впервые знакомится с обратными задачами оптики атмосферы или собирается практически исполь- зовать ту или иную вычислительную схему интерпретации в своей работе.  [c.7]


Вывод соотношений, характеризующих излучение продольных и поперечных -волн от сил, приложенных к границе, является довольно сложным. Синтез распределения напряжений в источнике согласно решениям волнового уравнения в выбранной координатной системе, определение интегральных выражений для смещений, интегрирование по частотам с целью построения импульсных сейсмограмм и оценка интегралов в некотором диапазоне перемек-иых — каждый из этих шагов требует математического искусства и изобретательности даже в случае простейшей геометрии границ к источников. В случае же с меньшей симметрией сложность во много раз возрастает. Например, излучения от двух противоположно направленных сосредоточенных сил, действующих на стейку пустой цилиндрической полости, можно было оценить способом Хилена, но отсутствие осевой симметрии усложняет каждый шаг. Если вместо воздействия на свободную границу сосредоточенная сила действовала бы на плоской границе между твердой и жидкой средами, то потенциалы в жидкой среде необходимо было бы учитывать на протяжении всех вычислений. Вывод точных интегральных выражений для смещений и построение приближенных выражений для низких частот и больших расстояний — весьма сложная задача, а для более сложной геометрии какие-то упрощения должны быть сделаны еще раньше. В этом разделе показывается, что простой метод вычисления характеристик излучения различных источников. вытекает из принципа взаимности для упругих волн. Этот метод, в котором излучение источника вычисляется как бы в обратном порядке, приводится ниже,  [c.220]

Можно предложить и другие методы численного решения интегрального уравнения (2.18) [и аналогичного уравнения (2.28)]. К ним относятся разложения неизвестной функции по какой-либо системе функций, например в ряд Фурье, или в ряды по другим ортргональным системам. Обзор и сравнение различных численных методов решения интегральных уравнений применительно к решению уравнений типов (2.18) и (2.28) для задачи об излучении звука цилиндром конечной высоты приведены в статье [95].  [c.67]

Представляет интерес использование томографических методов, позволяющих получать значения искомой величины в сечении исследуемого объема для решения задач диагностики сред и оптического излучения. В рассмотренных ранее схемах при томографическом анализе объект зондировался коллимированным пучком с различных направлений и регистрировалась прошедшая часть излучения. Эти данные служили исходными для последующей обработки, заключающейся в решении обратной задачи, которая описывается интегральным уравнением Радона. Такие многоракурсные схемы использовались для измерения локальных значений коэффициента поглощения (см. 3.3) внутри исследуемого объекта. В них регистрировалось и обрабатывалось лишь прошедшее излучение рассеянным же светом либо пренебрегали, либо его отфильтровывали.  [c.91]

Первый, так называемый классический подход в методах алгебраического приближения характеризуется тем, что алгебраической аппрокснмании подвергается непосредственно исходное интегральное уравнение радиационного теплообмена, составленное для любого вида плотностей излучения. Для определения средних по дискретным участкам излучающей системы плотностей излучения подобная аппроксимация, по-видимому, впервые была применена О. Е. Власовым [Л, 100] при решении частной задачи переноса излучения в каналах с адиабатическими стенками. В дальнейшем эта идея была развита и обобщена для произвольного числа серых диффузных поверхностей, разделенных диатермической средой, и для систем с поглощающей средой в работах Г. Л. Поляка [Л. 19, 93, 130].  [c.220]

Для более точ ного нахождения неизвестных коэффициентов распределения можно воспользоваться методом итераций. Вначале определяются коэффициенты распределения, которые можно найти по условию задачи (известные коэффициенты). Остальные (искомые) коэффициенты либо принимаются равными единице, либо приближенно определяются на основании качественного характера относительного распределения величин °г и °реэ (при условии, что он изве1стен). Подставив затем полученные коэффициенты распределения в систему уравнений (8-2) и решая ее, определим средние величины неизвестных по условию плотностей излучения Е°т и Е°рез по зонам. Далее, подставив известные по условию и найденные из решения системы (8-2) значения плотностей Е°т и Е%ез по всем зонам в исходное интегральное уравнение (8-1), определим локальные значения величин Е°т т °рез на тех зонах, где они неизвестны. На основании полученных значений локальных плотностей излучения вычислим неизвестные по условию коэффициенты распределения уже во втором приближении и, используя снова систему (8-2), определим искомые средние значения величин Е°т и Е°рез тоже во втором приближении.  [c.233]

В работах [Л. 104, 430] исследован процесс радиационного теплообмена ламинарного потока с заданным профилем скоростей, текущего в канале. При этом так же, как и в исследованиях внешней задачи обтекания поверхности, пренебрегается аксиальным переносом тепла за счет теплоироводности и излучения. Далее автор, исходя из результатов исследования чисто конвективного теплообмена на стабилизированном участке, делает допущение о постоянстве безразмерного температурного профиля в каждом сечении потока, что позволяет свести задачу к одномерной. При описании радиационного теплообмена автором используются интегральные уравнения теплообмена излучением применительно к плоскому слою. Представляя искомую функцию безразмерной температуры в виде одномерного ряда Тэйлора по оптической толщине слоя и подставляя ее в исходное интегральное уравнение, автор приходит к нелинейному дифференциальному уравнению, решаемому затем численно. При этом производится ограничение первыми тремя членами ряда, что дает дифференциальное уравнение второго порядка. Полученные результаты численного решения были сопоставлены автором [Л. 104] с решениями методом диффузионного приближения и приближения оптически тонкого слоя.  [c.400]

В работах [ 103, 106] были рассмотрены задачи о поведении конечных трещин при ударном нагружении. В первой из них использован метод Винера—Хопфа, а во второй — задача сводилась к численному решению интегральных уравнений Фредгольма для переменных, трансформированных при помощи преобразования Лапласа, причем обращение преобразования выполнялось только для главной части локальных напряжений в вершине трещины. Характерным здесь является то, что решения для конечной трещины остаются ограниченными при то, что после достижения пикового значения (в момент прихода в вершину трещины волны, излученной от противоположной вершины) коэффициент интенсивности колеблется около статического значения с убьшающей амплитудой. Подчеркнем еще раз, что до зтого момента времени решение для конечной трещины совпадает с решением для полубесконечной.  [c.40]

Метод прогонки. Этот метод применяется не к интегральному, а к дифференциальному уравнению переноса. Значительная трудность при его решении создается тем обстоятельством, что задаются не начальные, а граничные условия, так что надо решать не задачу Коши, а краевую задачу, что всегда сложнее. После дискретизации дифференциального уравнения по глубине, углам и частотам получающееся разностное уравнение решается сначала от верхней границы в сторону возрастающих глубин, а затем обратным ходом. Однако в первом случае не известна интенсивность излучения, идущего вверх, а во втором — вниз. Поэтому при прямом проходе находится решение не с определенным граничным значением интенсивности выходящего излучения, а рассчитываются обратные матрицы на случай как бы произвольных ее значений, причем заданных для всех значений углов. Затем решение выбирается так, чтобы удовлетворить условию на нижней границе [45]. После этого вычисляется интенсивность восходящего излучения. В теории переноса такая процедура, которая применяется для расчета как рассеяния в линии, так и при монохроматическом рассеянии, носит название метода Фотрие.  [c.201]

Из-за чрезвычайно больших трудностей, возникающих при решении топочной задачи, в большинстве работ она рассматривается в упрощенной постановке. Главное упрощение заключается в том, что вместо системы уравнений, описывающей теплообмен в топочной камере, рассматриваются лишь уравнения теплообмена излучением в интегральной форме. Незамкнутость такого описания топочного процесса аннулируется путем задания в качестве граничных условий ряда величин, которые в действительности являются функциями рассматриваемого процесса. Такой подход приводит к тому, что его результаты затруднительно использовать для расчета теплообмена в реальных топочных устройствах. Как известно, основной базой зональных методов расчета являются интегральные уравнения радиационного теплообмена, которые с помощью их алгебраической аппроксимации приводятся к системе алгебраических уравнений.  [c.73]


Не представлялось возможным коснуться в монографии обратных задач, связанных с нелинейными эффектами взаимодействия оптического излучения с компонентами атмосферы [14, 45], атмосферной рефракцией [1] и турбулентностью [14]. С учетом этого обстоятельства следует признать, что название монографии несколько шире содержащегося в ней материала. Вместе с тем, если акцентировать внимание на математических аспектах теории оптических обратных задач, то в монографии рассмотрены практически все виды тех интегральных уравнений и их систем, к которым сводятся обратные атмосферно-оптические задачи независимо от их конкретного физического содержания. В частности, если вести речь о некорректных задачах, то в монографии изложены эффективные алгоритмы обращения интегральных уравнений Фредгольма, Вольтерра, простейшие нелинейные уравнения, а также интегральные уравнения в форме интеграла Стилтьеса. Особое внимание уделено построению вычислительных схем численного решения систем функциональных уравнений, включающих и интегральные с ядрами, зависящими от неизвестных параметров. В этом отношении содержание монографии обладает достаточной общностью. На примере обратных задач светорассеяния представилось возможным рассмотреть методы численного решения тех функциональных уравнений, к которым сводятся наиболее распространенные обратные задачи оптики атмосферы. Подобные аналогии указываются в тексте монографии и сопровождаются соответствующими ссылками на литературу.  [c.12]


Смотреть страницы где упоминается термин Интегральные методы решения задач об излучении : [c.427]    [c.204]    [c.399]    [c.606]    [c.421]    [c.99]    [c.152]    [c.141]    [c.414]    [c.431]    [c.340]   
Смотреть главы в:

Акустика  -> Интегральные методы решения задач об излучении



ПОИСК



Задача и метод

Задачи и методы их решения

Интегральное излучение

Метод интегральный

Решения метод



© 2025 Mash-xxl.info Реклама на сайте