Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральная оптика

Голографические дифракционные решетки используют в лазерной технике. Введенные в лазерный резонатор они служат хорошими селекторами длин волн излучения лазеров. В последнее время такие решетки находят широкое применение в интегральной оптике в качестве. элементов связи, обеспечивающих введение световых волн в тонкопленочные волноводы.  [c.65]

Развитие линий О. с. связано с развитием интегральной оптики. Использование планарных волноводных модуляторов, переключателей, ответвителей, фильт-  [c.442]


Для интегральной оптики разработаны диэлектрич. волноводы — С., представляющие собой тонкую (порядка Л) плёнку, нанесённую на подложку. Условие волно-водного режима распространения и.злучения заключается в том, что показатель преломления плёнки больше показателей преломления подложки и среды над волноводом. Диэлектрич. С. этого типа изготавливают методом катодного распыления материала волновода на подложку, методом эпитаксиального наращивания из жидкой или газообразной фазы, методом ионной имплантации.  [c.462]

Последние достижения в рассмотренных выше направлениях позволяют с оптимизмом Оценивать перспективы создания трехмерных интегральных схем, при реализации которых будут умело сочетаться как традиционные для микроэлектроники подходы, так и последние технологические новинки интегральной оптики.  [c.86]

Для физиков и инженеров, работаюш их в области квантовой электроники, интегральной оптики и волоконно-оптических линий связи, а также для студентов и аспирантов.  [c.4]

В настоящей книге дается ясное изложение физических основ распространения электромагнитного излучения в анизотропных средах и рассматриваются физические принципы создания конкретных устройств электрооптики, акустооптики, интегральной оптики и устройств, использующих нелинейные свойства среды.  [c.5]

НАПРАВЛЯЕМЫЕ ВОЛНЫ И ИНТЕГРАЛЬНАЯ ОПТИКА  [c.438]

Направляемые волны и интегральная оптика  [c.439]

Направляемые волны н интегральная оптика 481  [c.481]

Эллипсометрия представляет собой мощный аппарат фундаментальных исследований в области физики твердого тела, интегральной оптики и физики полупроводников. Поляризационно-оптические измерения в сочетании с методами термоотражения, электроотражения и пьезоотражения позволили получить сведения  [c.207]

Гетеролазеры и гетерофотоприём-н и к и, используемые в сочетании с плёночными полупроводниковыми Болиоводами, могут выполняться на основе единой Г. и на общей полупроводниковой подложке объединяться (интегрироваться) в оптич. схему (методами планарной технологии). Для управления условиями генерации и распространения света часто используются сложные Г., активный слой к-рых состоит из неск. слоев постоянного или плавно изменяющегося состава с соответствующим изменением Sg. Помимо локализации света в пределах одного или неск, слоёв в плоскости ГП, при создании интегрально-оптнч. схем возникает необходимость дополнит, локализации световых потоков в плоскости волноводных слоёв (в плоскости ГП). Такие волноводы наз. полосковыми и создаются изменением либо состава и свойств полупроводника в плоскости ВОЛ1ГОВОДНОГО слоя, либо толщины слоёв, Встраивание гетеролазера в волноводную схему осуществляется с помощью оптического резонатора, образуемого периодич, модуляцией толщины волноводного слоя. При определ. выборе периода модуляции благодаря дифракции в волноводе возникает волна, бегущая в обратном направлении. В результате формируется распределённое отражение света (см. Интегральная оптика).  [c.449]


Магнитооптич. эффекты используются в устройствах записи и хранения информации (т. и. магнитооптич. диски), в системах управления лазерным излучением (для создания дефлекторов, оптич. затворов, для модуляции света и т. д.), при копструировании псвзаимных оптич. элементов, лазерных гироскопов, элементов интегральной оптики и т. д.  [c.703]

В интерференционных модуляторах используют те же материалы, что и в поляризациоиных. Особенно эффективны интерференционные М. с. в плёночном исполнении в системах интегральной оптики.  [c.180]

В 80—90-х гг. О. с. широко применяются для устройств передачи информации (см. Оптическая связь. Волоконная оптика, Интегральная оптика). Элементы таких систем — волоконные световоды, планарные и канальные волноводы, градиентные фокусирующие элементы (селфок, градан) — изготовляются из спец, сортов О. с., В Т. ч. особо прозрачных (см. Оптика неоднородные сред). При этом оптич. элементы формируют не механич. обработкой, а вытягиванием из размягчённого состояния и разл. видами физ.-хим. воздействий твердотельной диффузией, ионным обменом в растворах и расплавах, осаждением из газообразной фазы, градиентной термообработкой и т. д. Отечеств, промышленность производит ОК. 300 марок О. с., что отвечает номенклатуре передовых стран мира.  [c.460]

В отличие от селективного отражения металлов, к-рое может быть весьма высоким (но всегда коаф. отражения R < 1), при П. в. о. для прозрачных сред Д = 1 для всех Я и не зависит практически от числа отражений. Следует, однако, отметить, что отражение от механически полированной поверхности из-за рассеяния в поверхностном слое чуть меньше единицы на величину 2-10-. Потери на рассеяние при П. в. о. от более совершенных границ раздела, наир, в волоконных световодах, ещё на неск. порядков меньше. Высокая отражат. способность границы в условиях П. в. о. широко используется в интегральной оптике, оптич. линиях связи, световодах и оптич, призмах. Высокая крутязна коэф. отражения вблизи ф р лежит в основе измерит, устройств, предназначенных для определенна показателя преломления (см. Рефрактометр). Особенности конфигурации эл.-магн. поля в условиях П. в. о., а также свойства латеральной волны используются в физике твёрдого тела для исследования поверхностных возбуждённых колебаний (плазмонов, поляритовов), находят широкое применение в спектроскопич. методах контроля поверхности на основе нарушенного П. в. о., комбинационного рассеяния света, люминесценции и для обнаружения весьма низких значений концентраций молекул и величин поглощения, вплоть до значений безразмерного показателя поглощения к 10".  [c.27]

В микроэлектронике С. пока не нашли столь обширных применений, как полупроводники, поскольку электронные устройства на С. плохо поддаются интеграции. Однако решены нек-рые технол. проблемы, связанные с получением тонких плёнок С. разного состава (в т. ч. Р2Т) со свойствами, близкими к монокристаллам. Переключение поляризации в таких плёнках толщиной 505000Л осуществляется малыми электрик, напряжениями пленки могут наноситься на полупроводниковые подложки. Системы оперативной памяти на основе гонких сегнетоэлектрич. плёнок перспективны. В устройствах интегральной оптики используются волно-водные каналы на поверхности С., к-рые создаются путём диффузного легирования кристаллов, гл. обр. нио-бата и танталата лития.  [c.481]

Жидкие и вакуумнь1е Ф. используют в осн. в микроэлектронике для создания интегральных схем. Кроме того, жидкие Ф. применяют в фототехнологии изготовления элементов голограммной, а также элементов и схем интегральной оптики. Сухие плёночные Ф. используют для изготовления печатных плат.  [c.358]

При распространении электромагнитного излучения в периодических средах возникает много интересных и потенциально полезных явлений. К ним относятся дифракция рентгеновского излучения в кристаллах, дифракция света на периодических изменениях механических напряжений, возникающих при прохождении звуковой волны, и запрещенная зона для света в слоистых периодических средах. Эти явления используются во многих оптических устройствах, таких, как дифракционные решетки, голограммы, лазеры на свободных электронах, лазеры с распределенной обратной связью, лазеры с распределенным брэгговским отражением, брэгговские отражатели с высокой отражательной способностью, акустооптические фильтры, светофильтры Шольца и т. д. В данной главе мы рассмотрим некоторые общие свойства электромагнитного излучения в периодических средах и общую теорию его распространения в слоистой периодической среде. Эта теория имеет весьма близкую формальную аналогию с квантовой теорией электронов в кристаллах и поэтому позволяет использовать понятия блоховских волн, запрещенных зон, затухающих и поверхностных волн. Наконец, мы обсудим применение этой теории для решения ряда хорошо известных задач, таких, как расчет коэффициента отражения от брэгговского зеркала, коэффициентов пропускания фильтра Шольца и оптических поверхностных волн. Кроме того, мы обсудим двойное лучепреломление за счет формы и его применение в дихроичных поляризаторах. Периодические структуры играют также важную роль в интегральной оптике, рассмотрение которой мы отложим до гл. 11.  [c.169]


Направляемые волнь] и интегральная оптика 443  [c.443]


Смотреть страницы где упоминается термин Интегральная оптика : [c.29]    [c.446]    [c.625]    [c.151]    [c.421]    [c.463]    [c.237]    [c.5]    [c.154]    [c.463]    [c.462]   
Смотреть главы в:

Основы оптики  -> Интегральная оптика


Оптические волны в кристаллах (1987) -- [ c.438 ]



ПОИСК



Интегральная оптика и нелинейные

Интегральная оптика и нелинейные процессы

Лагранжа интегральный оптика

НАПРАВЛЯЕМЫЕ ВОЛНЫ И ИНТЕГРАЛЬНАЯ ОПТИКА



© 2025 Mash-xxl.info Реклама на сайте