Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стенка адиабатическая

Л 1-Ь Л 2 +. . + А т) велико. В равновесное состояние при некоторых ограничениях на и(д, ц) может прийти, например, газ или смесь не реагирующих между собой газов в баллоне с абсолютно неподвижной стенкой ( адиабатической оболочкой ) или с макроскопически неподвижной стенкой, имеющей постоянную температуру ( термостат ).  [c.20]

Рассмотрим стабилизированную теплоотдачу в кольцевом канале при постоянной температуре внутренней стенки ду = 0), внешняя стенка адиабатическая д = 0). Если пренебречь изменением продольной теплопроводности, то дифференциальное уравнение конвективного теплообмена и граничные условия могут быть представлены в следующем виде  [c.291]


Для расчета теплоотдачи пластины в воздушном потоке высокой дозвуковой скорости при 10 коэффициент теплоотдачи отнесен к разности температур между температурой стенки и адиабатической температурой стенки а.с [17]  [c.64]

Адиабатическая температура стенки  [c.65]

При турбулентном течении жидких металлов в кольцевых и щелевых каналах значения чисел Нуссельта и адиабатических температур стенок при одностороннем обогреве можно приближенно определить по следующим формулам  [c.126]

Для получения численных значений эмпирических температур следует обратиться к первому и второму законам термодинамики. Первый закон термодинамики просто констатирует сохранение энергии при условии, что учитывается не только работа, совершаемая над системой, но и обмен теплом через стенки с окружающей средой. Если система в остальных отношениях изолирована, то внутренняя энергия и, представляющая собой экстенсивную величину, может только увеличиваться при совершении над системой некоторой работы. Однако если система термически не изолирована и в результате некоторого процесса переходит из термодинамического состояния А в другое состояние В, то работа совершаемая над системой, разумеется, зависит от того, каким способом система осуществляет переход из состояния А в состояние В. С другой стороны, увеличение внутренней энергии равно и в—и А независимо от способа совершения работы. Следовательно, для термически не изолированной системы увеличение внутренней энергии и в — и а отлично от Разность Q мы назовем количеством теплоты, которая, таким образом, служит мерой отклонения от адиабатических условий. Следовательно, для любого термодинамического процесса, начинающегося в состоянии А и завершающегося в состоянии В, изменение внутренней энергии определяется выражением  [c.15]

Будем рассматривать два случая — изотермической и адиабатической стенок канала. Соответствующие этим случаям граничные условия имеют вид  [c.319]

Рис. 96. Зависимость безраз.мерной температуры от параметра в случаях адиабатической (сплошная) п изотермической (пунктир) стенок канала. Рис. 96. Зависимость безраз.<a href="/info/29315">мерной</a> температуры от <a href="/info/3128">параметра</a> в случаях адиабатической (сплошная) п <a href="/info/319178">изотермической</a> (пунктир) стенок канала.

Видно, что при малых значениях переменной функции 0 ( ), 0,3 (I), Ф (I) и Фз (с) ведут себя одинаково в обоих случаях, как для адиабатической, так и для изотермической стенки канала. Это связано с тем, что фронт процессов теплопроводности и диффузии целевого компонента в пленке жидкости при малых не достигает поверхности стенки. При этом температура стенки канала 0,, и концентрация целевого компонента на стенке Ф остаются практически равными нулю, а значения температуры и концентрации на поверхности пленки жидкости являются постоянными  [c.326]

С ростом с, когда фронт процессов тепломассопереноса достигает стенки, температура и концентрация целевого компонента ведут себя по-разному в случаях адиабатической и изотермической стенок канала. В первом пз этих случаев, как это следует из рис. 96, средняя по сечению температура жидкости 0, температура на поверхности пленки 0 и температура стенки 0,, монотонно возрастают по мере увеличения стремясь к одному предельному значению  [c.326]

Функции концентрации целевого компонента Ф, Фs и Ф . в случае адиабатической стенки канала также стремятся к одному и тому же предельному значению с ростом  [c.326]

Рис. 97. Зависимость безразмерной концентрации целевого компонента от параметра в случаях адиабатической (сплошная) и изотермической (пунктир) Стенок канала. Рис. 97. Зависимость безразмерной концентрации целевого компонента от <a href="/info/3128">параметра</a> в случаях адиабатической (сплошная) и <a href="/info/319178">изотермической</a> (пунктир) Стенок канала.
Профили температуры и концентрации целевого компонента в пленке жидкости для различных ее сечений в случаях адиабатической и изотермической стенок канала показаны на рис. 98 и 99.  [c.328]

В случае адиабатического течения без трения на стенке уравнения (7.10), (7.13) и (7.14) дают для критического режима (индекс с)  [c.302]

Адиабатическое течение в сопле без трения на стенках. Если пренебречь излучением, трением на стенках и теплоотдачей от стенок к газу, принять Мпр = 2 и предположить, что применим закон Стокса для сопротивления частиц, то уравнения (7.26), (7.29) и (7.30) принимают вид  [c.304]

Для создания перенасыщенного пара в рабочем объеме обычно одна из стенок этого объема делается подвижной (в виде поршня или эластичной диафрагмы). Совершая адиабатическое расширение газа до объема V2, мы вызовем понижение температуры в рабочем объеме до некоторого значения, удовлетворяющего соотношению  [c.46]

В более поздних конструкциях камер создание пересыщенного состояния пара достигается быстрым выпуском сжатого воздуха из вспомогательного объема через клапан Кх- В результате уменьшения давления во вспомогательном объеме резиновая диафрагма Д быстро опускается и происходит адиабатическое расширение газа и пара в рабочем объеме камеры на 25—35%, приводящее к понижению температуры и пересыщению пара. Пунктиром показано положение диафрагмы Д на опорной сетке S . Изменяя положение этой сетки, можно регулировать величину расширения газа и пара в рабочем объеме. Трубка служит для впуска сжатого воздуха во вспомогательный объем который возвращает диафрагму в исходное положение в конце каждого рабочего цикла. Сетка Si ограничивает движение резиновой диафрагмы вверх. Через трубку Кз заполняется рабочий объем газом и паром выбранной жидкости. Рабочий объем камеры ограничен стеклянными боковыми стенками А, верхним плоским стеклом В и металлической сеткой Si, покрытой черным бархатом (для получения темного фона). Для освещения рабочего объема сбоку ставится импульсная осветительная лампа.  [c.47]

Постепенное возрастание скорости поршня можно представить как ряд последовательных скачков скорости, каждый из которых вызывает новую волну сжатия. Оказывается, что скорость распространения каждой такой последующей волны сжатия больше скорости распространения предыдущей волны. Объясняется это следующим. Тем, что, во-первых, распространение последующей волны сжатия будет происходить в газе, частицам которого поршень уже сообщил некоторую скорость V. Так как скорость течения газа в возмущенной области направлена в ту же сторону, что и скорость распространения последующей волны, то относительно стенок трубы эта последующая волна распространяется со скоростью ц + с во-вторых, распространение первоначальной волны сжатия происходит в условиях, близких к адиабатическим, и поэтому сопровождается нагреванием газа. С повышением же температуры газа скорость звука в нем увеличивается (ем. 61). Следовательно, в возмущенной области 2 (рис. 191) с>Со. Оба эти обстоятельства и приводят к тому, что более поздние волны догоняют более ранние. В результате их слияния профиль распространяющейся в газе первоначальной волны сжатия со временем становится все круче и круче и в конце концов принимает вид, показанный на рис. 191, б.  [c.239]


В качестве примера определим возрастание энтропии при таком типично необратимом процессе, каким является адиабатическое расширение тела в пустоту (напомним, что адиабатическое расширение в пустоту составляет основной процесс в опыте Джоуля). Предположим для определенности, что расширяющимся телом является газ, который заключен в одной половине теплоизолированного сосуда с жесткими стенками. Другая часть сосуда, отделенная от первой свободно открывающейся адиабатической перегородкой, не содержит газа (рис. 2.23).  [c.61]

Важным преимуществом многоступенчатых компрессоров является меньший расход энергии на привод компрессора, т. е. снижение работы сжатия. Как указывалось, изотермическое сжатие газа в компрессоре наиболее экономично, так как затраты работы при изотермическом сжатии значительно меньше, чем при адиабатическом или политропическом сжатии. Однако самое совершенное охлаждение стенок цилиндра не приближает в достаточной  [c.544]

Экспериментальные исследования на плоской пластинке позволили установить, что для адиабатической стенки влияние сжимаемости (числа Моо) на устойчивость пограничного слоя при умеренных числах Маха незначительно, т. е. устойчивость может рассматриваться такой же, как при Ма, о (несжимаемый поток). В случае неадиабатической (теплопроницаемой) стенки устойчивость существенно зависит от числа для заданного отношения температур (или  [c.91]

Если пузырек содержит большое количество газа, а движение его стенки происходит настолько быстро, что рассеяние тепла в жидкости можно рассматривать как медленно развивающийся процесс, то закон изменения состояния газа в пузырьке следует считать адиабатическим.  [c.16]

В сложных системах можно использовать специальные регуляторы для снижения скорости протекания (т. е. торможения) процессов. Допустим, что система состоит из отдельных, различающихся одна от другой частей (по температуре, составу и т. п.). Состояние такой системы не является состоянием полного термодинамического равновесия и должно поддерживаться действием регуляторов — адиабатических оболочек, жестких или непроницаемых стенок, полупроницаемых перегородок и т. п. Если отключить эти регуляторы, то в системе разовьются неравновесные и необратимые процессы, в результате которых система будет приведена к состоянию полного равновесия. Если действие регуляторов осуществлять столь медленно, что в любой момент времени каждая из частей системы будет находиться в локальном равновесии, то состояние каждой из этих частей системы будет изменяться практически обратимым образом, несмотря на то, что в целом система не находится в равновесии. Именно в таких условиях протекают процессы в тепловых машинах и других устройствах.  [c.27]

Прежде всего условимся считать изменение состояния газа при истечении адиабатическим. Это допущение достаточно обоснованно, поскольку при значительной разности давлений за счет преобразования потенциальной энергии в кинетическую в отверстии возникает столь большая скорость, что поток не успевает отдать свое тепло стенкам и окружающей среде, куда он вытекает. Для такого процесса приме-  [c.246]

Термодинамическую систему, которая не может обмениваться теплом с окружающей средой, называют теплоизолированной или адиабатически изолированной системой. Примером теплоизолированной системы является газ, находящийся в сосуде, стенки которого покрыты идеальной тепловой изоляцией, делающей невозможным теплообмен между заключенным в сосуде газом и окружающими телами. Такую идеальную теплоизолирующую оболочку называют адиабатической оболочкой.  [c.9]

Адиабатическая температура стенки в рассматриваемом сечении опытной тру( Ы через температуру тор.мо-жения представляется зависимостью  [c.244]

Такт сжатия протекает при закрытых впускных и выпускных клапанах. Поршень движется от нижней к верхней мертвой точке. При этом происходит подготовка топлива к сгоранию. Процесс сжатия в двигателе вследствие теплообмена горючей смеси со стенками цилиндра не может быть адиабатическим и протекает по политропе с постоянным средним показателем i = 1,3 ч- 1,36. Давление в конце такта сжатия достигает 4—12 бар у карбюраторных двигателей и 30—40 бар у дизелей, температура соответственно 650—700 и 800—900 К.  [c.159]

Если две первоначально изолированные системы приведены в контакт друг с другом через общую стенку, то последующие события зависят от природы стенки. Если стенка допускает тепловое, но не материальное взаимодействие, то ее называют диатермальной. В таком случае в конце концов будет достигнуто новое состояние теплового равновесия объединенной системы. Последующее разделение двух первоначальных систем не приведет к изменению теплового состояния каждой из них. В противоположность диатермальной стенка, непроницаемая для тепла (но допускающая, например, чтобы над ограниченной ею системой совершалась механическая работа), называется адиабатической.  [c.13]

На рис. 96 и 97 показаны зависимости безразмерных температур 0 (с), 0от( ) II 0з( ) и концентраций целевого ко.мпонента Ф( ), Ф (Е) и Фз( ), рассчитанные соответственно при помощи соотношений (8. 4. 28), (8. 4. 29), (8. 4. 38)—(8. 4. 41), (8. 4. 51), (8. 4. 52) для случаев изотермической и адиабатической стенок канала. Здесь  [c.325]

Фултона [18], Шспера [19] и Ван-Демтсра [20] ). Строгое теоретическое рассмотрение сложного турбулентного течения газа, которое имеет место в вихревой трубе, является чрезвычайно трудной задачей, особенно в связи с тем, что профиль скоростей потока внутри трубы экспериментально пока еще не определен. Однако качественно эффект охлаждения можно объяснить следую-п им образом. Вращающийся поток воздуха внутри трубы создает в радиальном направлении градиент давления, возрастающий от оси к стенке трубы. Влияние турбулентности на такое ноле давлений выражается в адиабатическом перемешивании. Это приводит к созданию адиабатического распределения температур, при котором более холодный газ оказывается в области, расположенной вблизи оси трубы. Однако вследствие теплопроводности, приводящей к уменьшению градиента температур в радиальном направлении а также непостоянства значений угловой скорости в разных местах трубы адиабатическое распределение полностью осуществлено быть не может. Ван-Демтор описывает последний эффект следующим образом Если угловая скорость непостоянна, то вступает п действие другой механизм, приводящий к возникновению потока механической энергии в радиальном направлении наружу. Вследствие турбулентного трения (вихревой вязкости) внутренние слои жидкости или газа стремятся заставить внешние слои двигаться с той  [c.13]


Пусть в одной половине теплоизолированного сосуда с жесткими стенками заключено некоторое количество исследуемого газа (рис. 2.5) другая половина сосуда, oтдeлeн [aя от первой адиабатической перегородкой, не содержит газа, т. е. пуста.  [c.33]

Обратимое изменение состояния сложной изолированной системы означает следующее. Изолированная система состоит в самом общем случае из отдельных, отличающихся друг от друга частей (например, по температуре, давлению, составу и т. д.), которые в общем случае могут быть даже не связаны между собой. Энтропия, внутренняя энергия и объем системы в целом равны соответственно сумме энтропий, внутренних энергий и объемов, составляющих систему частей. Когда температура, давление, состав или какие-либо другие свойства разных частей системы различны, то состояние системы не является, естественно, состоянием полного термодинамического равновесия и должно поддерживаться действием различных регуляторов адиабатических перегородок, жестких стенок, полупроницаемых перегородок н т. п. Если действие регуляторов осуществляется достаточно медленно, т. е. квазистатически, так чтобы в любой момент времени каждая из частей системы находилась в локальном равновесии, а общая энтропия и объем системы сохраняли неизменные значения, то состояние системы будет изменяться обратимым образом.  [c.98]

В случае осцилляций, монотонного сжатия пли расширения газового пузырька без фазовых переходов (S, = О п qzi = — при конечных, по пе очень больших изменениях его радиуса, распределение температур около стенки пузырька (г = а) качественно показано на рис. 1.6.1, а. Сплошная кривая соответствует сжатию, а штриховая — расширению при осцилляциях кривая распределения температур колеблется от сплошной к штриховой с периодом осцилляций пузырька. При этом температура центральной части нузырька изменяется по закону, близкому к адиабатическому, в соответствип с изменением объема пузырька,  [c.114]

Обратимое изменение состояния сложной изолированной системы означает следующее. Изолированная система в общем случае состоит из отдельных, отличающихся одна от другой частей (например, по температуре, давлению, составу и т. п.), которые в общем случае могут быть не связаны между собой. Энтропия, внутренняя энергия и объем системы равны соответственно сумме энтропий, внутренних энергий и объемов, составляющих систему частей. Когда температура, давление, состав или другие свойства разных частей системы различны, то состояние системы не является, естественно, состоянием полного термодинамического равновесия и должно поддерживаться действием различных регуляторов (адиабатических перегородок, жестких стенок, полупроницаемых перегородок и т.п.). Если действия регуляторов доста-  [c.127]

Возрастание энтропии при адиабатическом расширении тела в пустоту. Предположим для определенности, что расширяющимся телом является газ, который заключен в частл теплоизолированного сосуда с жесткими стенками. Другая часть сосуда, которая отделена от первой свободно (т. е. без трения) открывающейся адиабатической перегородкой, не содержит газа (т. е. вакуумирована) (рис. 3-11).  [c.75]

Практически повышение степени сжатия в двигателях, работающих по циклу с подводом тепла при l = onst, ограничивается температурой самовоспламенения сжимаемой в цилиндре рабочей смеси с детонационной стойкостью топлива. Повышение температуры рабочей смеси, вызываемое адиабатическим сжатием, и нагревание от стенок цилиндра и остаточных газов при высоких степенях сжатия е могут привести к самовоспламенению смеси еще в процессе сж атия. Следствием этого будет возникновение большого усилия на поршень, что может привести к поломке двигателя.  [c.381]


Смотреть страницы где упоминается термин Стенка адиабатическая : [c.445]    [c.323]    [c.407]    [c.284]    [c.284]    [c.284]    [c.118]    [c.320]    [c.322]    [c.13]    [c.35]    [c.288]    [c.91]    [c.422]    [c.168]   
Температура (1985) -- [ c.13 ]



ПОИСК



Граничные условия для течения жидкости несжимаемой на стенке движущейся адиабатической

Температура стенки адиабатическая



© 2025 Mash-xxl.info Реклама на сайте