Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способность поглощательная

В [169] для топочных устройств предложена модель разреженного облака абсолютно черных частиц. В расчете были использованы представления о вероятности взаимного затенения частиц. При условии малости концентрации частиц в облаке была получена простая формула для поглощательной способности этой разновидности дисперсной среды  [c.146]

В ранее использованной модели [163, 171] предполагалось, что элементарные слои, образующие стопу, имеют толщину, равную d, и их оптические характеристики принимались равными характеристикам частиц. Такая связь между свойствами элементарного слоя и образующих его частиц может быть использована по крайней мере в качестве первого приближения при плотной упаковке частиц. Если система частиц сохраняет высокую объемную концентрацию при неплотной упаковке, связь между параметрами элементарного слоя и образующих его частиц будет более сложной. Для расчета этой зависимости служит геометрическая модель элементарного слоя—двумерная модель дисперсной среды [177], в которой реальные частицы, расположенные случайным образом в одной плоскости, заменены системой регулярно расположенных в узлах плоской квадратной сетки с шагом 2ур сфер. В рамках геометрической оптики взаимодействие излучения с поверхностью не зависит от ее размеров [125], поэтому принято, что сферы имеют единичный радиус. Предполагается, что поверхность их диффузно отражающая, серая. Для расчета характеристик элементарного-слоя используется вспомогательная схема (рис. 4.1), образованная моделью 2 и двумя абсолютно черными плоскостями I и 3. Задав на а. ч. плоскости 1 поток излучения плотностью qb, можно найти коэффициенты отражения и пропускания модели rt и Т( по отношению потоков, попадающих на плоскости / и 5 после многократного отражения на частицах, образующих систему 2, к заданному потоку, а затем поглощательную способность и равную ей степень черноты.  [c.149]


Если для плотного слоя известны методы расчёта радиационной составляющей эффективной теплопроводности [Л. 313, 314], зачастую небольшой по величине, то для дисперсных потоков типа газовзвесь и с повышенной концентрацией эти методы лишь разрабатываются. Так, в [Л. 257] указывается, что авторами разработана методика экспериментального определения эффективной степени черноты движущихся дисперсных систем, учитывающая (в отличие от принципа обычного радиометра) многократные переизлучения. Для этой цели согласно [Л. 257] достаточно экспериментально измерить температуры излучателя и приемника, а затем из балансового уравнения найти эффективную поглощательную способность. Остается неясны.м, какую температуру частиц, играющих роль приемника или излучателя, следует брать в расчет, поскольку по длине и сечению потока существует градиент температур частиц, усиленный излучением. В [Л. 66] в качестве расчетной поверхности нагрева принимается эффективная поверхность частиц дисперсного потока fo, а в качестве приведенной степени черноты потока  [c.269]

Искусственный спутник облетает Землю, находясь на ее дневной стороне. Спутник имеет форму шара. Поглощательная способность поверхности спутника для падающего солнечного излучения А, а ее степень черноты е.  [c.189]

Найти, каким должно быть отношение поглощательной способности поверхности спутника для падающего солнечного излучения к степени черноты в условиях задачи 10-12, чтобы температура поверхности была равна 30° С.  [c.190]

Поглощательная способность слоя газа толщиной /1 при парциальном давлении pi равна  [c.209]

Учитывая, что aiтемпературе поверхности труб  [c.230]

Для расчета поглощательной способности газов при температуре поверхности труб принимаем о ш2+40=45() С. При этой температуре с помощью тех же графиков находим  [c.233]

В 1859 г. на заре изучения теплового излучения Кирхгоф показал на основе весьма общих аргументов, что поглощательная способность материала должна равняться его излучатель-  [c.322]

Закон Кирхгофа справедлив не только для условий равновесия, но имеет и более общее содержание. Если бы это было не так, его использование было бы ограниченным, так как свободно излучающие поверхности не находятся в равновесии в термодинамическом смысле. Однако при применении закона Кирхгофа к неравновесным ситуациям важно тщательно определить, что подразумевается под испусканием и поглощением. Как было отмечено в работе [16], существуют два способа формулировки закона Кирхгофа, из которых только один ведет к универсально правильному утверждению о том, что излучательная способность эквивалентна поглощательной способности.  [c.325]


К равенству единице отношения излучательной способности к поглощательной только в условиях черного тела, т. е. при равенстве излучательно-поглощательных условий. Второе определение утверждает, что полное поглощение — это индуцированное поглощение минус вынужденное излучение, т. е. вынужденное излучение рассматривается как отрицательное поглощение. Полное излучение — это просто спонтанное излучение. Это второе определение, по-видимому, справедливо для любых условий теплового излучения независимо от того, существует или не существует равновесие. Кроме того, второе определение лучше соответствует экспериментальному определению поглощения. Экспериментально нет возможности отделить индуцированное поглощение от вынужденного излучения.  [c.326]

Выше отмечалось, что независимое вычисление излучательных свойств реальных материалов является безнадежной задачей. Однако в соответствии с законом Кирхгофа задачу можно свести к проблеме вычисления поглощения. Эта проблема, по-видимому, проще, так как она имеет отношения к взаимодействию внешнего электромагнитного поля с электронами в твердом теле. Подробное обсуждение этого вопроса не входит в круг задач данной книги, поскольку результаты вычисления поглощательной способности в термометрии используются редко. Однако качественные расчеты поглощательной способности металлов и диэлектриков могут быть сделаны, в частности, в низкочастотной области, где применима классическая электромагнитная теория. Точность результатов такого расчета свойств индивидуальных материалов для оптической термометрии недостаточно высока. Хороший обзор оптических свойств металлов и диэлектриков сделан в работе [84].  [c.326]

Полученное уравнение показывает, что А зависит от коэффициента абсорбции к и толщины слоя тела s. При толщине s = О коэффициент А . = О, т. е. поглощение происходит в слое вещества конечной толщины. Если s = оо, то Л), = 1, т. е. слой большой толщины поглощает луч целиком, как абсолютно черное тело. На величину Лх влияет также коэффициент абсорбции к. Если к велик, то поглощение происходит в тонком поверхностном слое. В связи с этим состояние поверхности тела оказывает большое влияние на его поглощательную и излучательную способность. Если к == О, то и Л), = 0.  [c.461]

Из закона Кирхгофа следует, что если тело обладает малой поглощательной способностью, то оно одновременно обладает и малой лучеиспускательной способностью (полированные металлы). Абсолютно черное тело, обладающее максимальной поглощательной способностью, имеет и наибольшую излучательную способность.  [c.466]

Закон Кирхгофа остается справедливым и для монохроматического излучения. Отношение интенсивности излучения тела при определенной длине волны к его поглощательной способности при той же длине волны для всех тел одно и то же, если они находятся, при одинаковых температурах, и численно равно интенсивности излучения абсолютно черного тела при той же длине волны и температуре, т. е. является функцией только длины волны и температуры  [c.466]

Излучение газообразных тел резко отличается от излучения твердых тел. Одноатомные и двухатомные газы обладают ничтожно малой излучательной и поглощательной способностью. Эти газы считаются прозрачными для тепловых лучей. Газы трехатомные (СО2 и НаО и др.) и многоатомные уже обладают значительной излучательной, а следовательно, и поглощательной способностью. При высокой температуре излучение трехатомных газов, образующихся при сгорании топлив, имеет большое значение для работы теплообменных устройств. Спектры излучения трехатомных газов, в отличие от излучения серых тел, имеют резко выраженный селективный (избирательный) характер. Этн газы поглощают и излучают лучистую энергию только в определенных интервалах длин волн, расположенных в различных частях спектра (рис. 29-6). Для лучей с другими длинами волн эти газы прозрачны. Когда луч встречает  [c.472]


Поглощательная способность газа при средней температуре стенок канала составляет  [c.483]

В случае плотного множества частиц в соответствии с теорией Ми при 2а < Лт (средняя длина волны излучения) поглощательная способность не зависит от а. Согласно результатам измерений [8071, поглощательная способность может отличаться от расчетной величины на 30 А, а в некоторых случаях в 2—3 раза.  [c.252]

Ф и г. 7.17. Поглощательная способность продуктов истечения из сопла ракеты, содержащих множество частиц MgO измерена на длине волны  [c.323]

Значительно увеличивает поглощательную способность материала вследствие создания на его поверхности оксидов, имеющих меньший коэффициент отражения по сравнению с основным металлом.  [c.128]

Из соотношения (1-30) следует, что равновесная температура поверхности тела в космическом пространстве зависит от 1) отношения поглощательной способности поверхности для солнечной радиации к излучательной способности, 2) расстояния этого тела до Солнца и 3) отношения проекции площади поглощающей поверхно-ети к площади излучающей поверхности.  [c.24]

Рис. 1-7. Изменение поглощательной и излучательной способностей поверхности с изменением температуры тела для различных материалов. Рис. 1-7. Изменение поглощательной и <a href="/info/10332">излучательной способностей</a> поверхности с <a href="/info/46047">изменением температуры</a> <a href="/info/6153">тела</a> для различных материалов.
Результаты расчетов излучательной способности элементарного слоя по формуле (4.28) совпадают с вычисленными ранее по поглощению внешнего йзлуче-ния значениями е<. Формулы (4.26) — (4.28) позволяют определить степень черноты двумерной дисперсной системы, образованной излучаюш,ими частицами, при условии, что нельзя использовать данные по отражению внешнего излучения. Поскольку предполагается, что модель дисперсной среды образована серыми частицами, для кото рых справедлив закон Кирхгофа, равенство поглощательной способности at и степени черноты б( свидетельствует о правильности модели и соответствующих уравнений.  [c.157]

Как следует из формул (4.32), излучательная способность неизотермичного элементарного слоя зависит не только от характеристик частиц и их концентрации, но и от перепада температуры в его пределах. В этом случае не соблюдается равенство излучательной и поглощательной способности системы, даже если она образована из серых частиц.  [c.158]

Поверхность, покрытая слоем ламповой сажи, излучает в направлении нормали в едипице телесного угла лучистую энергию =1,87-10з Вт/(м2-ср). Поглощательная способность сажи для черного излучения равна 0,96. Определить температуру этой поверхности, полагая, что для ламповой сажи справедлив закон Ламберта.  [c.189]

НОЙ способности. В противном случае было бы невозможным тепловое равновесие внутри полости черного тела для тел из различных материалов. Закон Кирхгофа, однако, значительно сильнее, чем это кажется на первый взгляд. Уравновешиваться должны не только полная поглощенная энергия и полная энергия изучения, но должен быть сбалансированным каждый ин-ду цированный излучательный и поглощательный процесс. Это называется принципом детального равновесия и является фундаментальным результатом, основанным на статистической механике. В статистическом ансамбле, представляющем систему в равновесии, вероятность возникновения некоторого процесса должна равняться вероятности протекания обратного процесса.  [c.323]

Таким образом, для тела, находящегося в равновесии внутри замкнутой полости, поглощательная епособность данного элемента поверхности для данной длины волны, данного состояния поляризации, данного направления в пределах данного телесного угла должна равняться излучательной способности для излучения с точно такими же параметрами.  [c.323]

В работах [52, 33] предложен новый метод измерения отношения излучательных способностей in situ. Здесь для измерения отношения поглощательных способностей материалов при двух длинах волн, используемых в пирометре отношения, применен лазер. Это делается с использованием спектрального пирометра, работающего на третьей длине волны, для измерения возрастания температуры образца при освещении лазером поочередно  [c.387]

Закон Кирхгофа. Для всякого тела излучательная и поглощательная способности зависят от VeMnepaTypbi и длины волны. Различные тела имеют различные значения Е и А. Зависимость между ними устанавливается законом Кирхгофа. Рассмотрим лучистый теплообмен между двумя параллельными пластинами с неодинаковыми температурами, причем первая пластина является абсолютно черной с температурой Т,, вторая — серой с температурой Т. Расстояние между пластинами значительно меньше их размеров, так что излучение каждой из них обязательно попадает на другую.  [c.464]

Отношение лучеиспускательной способности тела к его поглощательной способности одинаково для всех серых тел, находяш ихся при одинаковых температурах и равно лучеиспускат Льной способности абсолютно черного тела при той же температуре.  [c.466]

Карлсон [91] проводил опыты на ракетном двигателе с тягой 450 кг и рабочим давлением в камере 28 ama, работающем на смеси частиц MgO с горючим RP-1 и газообразном кислороде в качестве окислителя. Для выполнения спектральных измерений добавлялась соль (Na l), причем смотровые щели были расположены в сечении, где степень расширения сопла равнялась 5. Поглощательная способность продуктов истечения из сопла показана на фиг. 7.17, а температура газа и частиц — на фиг. 7.18.  [c.323]


Очевидно, если не выполнены эти два условия, что наблюдается в практике определения а, то Е Т)Фа Т). Как следует из теоретических и экспериментальных исследований [11], для чистых металлов существует следующее определенное соотношение между Т) и а Т) поглощательная способность металлической поверхности при температуре Т для излучения черного тела с температурой Го равняется степени черноты той же поверхности при температуре 7 = ]/ГоГ1, т. е.  [c.22]

Таким образом, поглощательная способность излучения черного тела металлическими поверхностями повышает приблизительно линейно с увеличением величины У ТйТ. При средних и низких температурах поглощательная способность чистых металлических поверхностей всегда больще их степени черноты. Так, больщинство полированных металлов при температурах, близких к комнатным, имеют значение степени черноты меньше 0,1, но они поглощают приблизительно 20—40% падающей лучистой энергии  [c.22]

Поглощательная и излучательная способности материала зависят от длины волны излучения, химических и механических свойств 1ПОверхности. Типичные изменения указанных характеристик в зависимости от температуры излучающего тела показаны на рис. 1-7 [14]. Поглощательная способность больщинства полированных металлических поверхностей возрастает почти линейно с увеличением температуры. Неметаллы проявляют противоположную тенденцию, что приводит к более  [c.24]


Смотреть страницы где упоминается термин Способность поглощательная : [c.70]    [c.169]    [c.7]    [c.268]    [c.271]    [c.188]    [c.473]    [c.477]    [c.11]    [c.252]    [c.323]    [c.14]    [c.18]    [c.18]    [c.21]    [c.22]    [c.27]   
Оптика (1977) -- [ c.323 ]

Оптика (1976) -- [ c.686 , c.689 ]



ПОИСК



Влияние формы объема на поглощательную способность среды

Влияние эффекта рассеяния на поглощательную способность системы частиц

Граничные условия. Соотношения между амплитудами волн. Коэффициент отражения. Связь между отражательной и поглощательной способностями Задачи

Излучательная и поглощательная способности тел

Излучательная и поглощательная способность различных сред

Излучательная, поглощательная и отражательная способности различных тел

Интегральная поглощательная способность и концентрация сажистых частиц в пламени жидкого топлива

Направленная поглощательная способность, интегральная

Направленная поглощательная способность, интегральная спектральная

Определение коэффициентов взаимного лучистого теплообмена и поглощательных способностей

Определение поглощательной способности пламени

Поглощательная способность газов и паров

Поглощательная способность диэлектриков и метал2- 4. Результативное излучение

Поглощательная способность запыленного объема

Поглощательная способность запыленных газовых сред

Поглощательная способность металлической тонки

Поглощательная способность сажистых газовых сред

Поглощательная способность тел по отношению к излучению произвольного источника

Поглощательная способность, интегральная

Поглощательная способность, интегральная полусферическая

Поглощательные способности среды

Поглощение энергии в среде и поглощательная способность

Полусферическая поглощательная способность

Пропускательная и поглощательная способности С02, Н20 и других газов. Гипотеза Беара

Прспускательная и поглощательная способности серых изотермических газовых объемов различной формы

Спектральная поглощательная способность

Спектральная поглощательная способность монодисперсной системы частиц углерода

Способность глаза поглощательная

Способность испускательнзя, поглощательная

Степени черноты и поглощательные способности среды для сложных случаев излучения

Эффективная поглощательная способность гладкотрубных экранов



© 2025 Mash-xxl.info Реклама на сайте