Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отражательная способность

Перенос фонового излучения описывается по-преж-нему системой уравнений (4.18). Решение ее с учетом (4.25) позволяет определить все компоненты потока излучения в ячейке. Как оказалось, взаимное влияние соседних сфер быстро уменьшается по мере разбавления системы и снижения отражательной способности. Уже при можно считать, что частицы излучают  [c.156]

Применение метода последовательных отражений к цилиндрической полости, имеющей вогнутое коническое основание, было исследовано в работе [11] для случаев изотермической и неизотермической полостей с диффузным и смешанным диффузно-зеркальным отражением. Сложность таких вычислений ограничивает число членов ряда до двух, тем не менее они оказались полезным руководством при конструировании полостей из материалов с низкой отражательной способностью.  [c.341]


Использование Ge и Si в полупроводниковых приборах (например, солнечных батареях и инфракрасной оптике) связано с коэффициентом преломления, отражательной способностью и пропусканием света в широком диапазоне длин волн.  [c.389]

Здесь интеграл заменен формулой квадратуры 84, 82 и р1, ро — степени черноты и отражательные способности поверхностей 1 и 2 соответственно, а — весовой фактор квадратуры. Подставляя уравнения (5.128) в уравнения (5.130), находим  [c.242]

Ф и г. 5.18. Сравнение расчетных величин Q для изотропного и анизотропного рассеяния сферическими частицами при указанных значениях т отражательная способность обеих стенок равна 0,1 [504].  [c.246]

На фиг. 5.18 и 5.19 представлены параметры М, N я Q, вычисленные в приближении четвертого порядка (и = 4) при заданной отражательной способности граничных стенок. При малых значениях То и а влияние анизотропного рассеяния достаточно хорошо описывается изотропным приближением. Кроме того, даже при То = оо множество частиц углерода еще не представляет собой абсолютно черного тела. В работе [503] приведены подробные данные по этому вопросу.  [c.246]

Влияние множества частиц можно показать на следующем примере. Имеются стенка 1 с температурой 1110° К и отражательной способностью Р( = 0,10 и стенка 2 с температурой 280° К  [c.246]

Фиг. 5.19. Параметры М, N, Q при т = 1,25 — 1,25г в зависимости от параметра а отражательная способность стенки 1 равна 0,1, а стенки 2 равна 0,9 [504]. Фиг. 5.19. Параметры М, N, Q при т = 1,25 — 1,25г в зависимости от параметра а <a href="/info/401088">отражательная способность стенки</a> 1 равна 0,1, а стенки 2 равна 0,9 [504].
В соответствии с формулой (7.3) выпускают датчики четырех типов, основанные на изменении площади 5 (рис. 7.14, а) входного зрачка (световой поток перекрывается либо заслонкой, связанной с деталью Д, либо кромкой самой детали) расстояния г от источника света до фоточувствительной поверхности (световой поток изменяется путем перемещения источника света или фотоприемника, вызванного изменением контролируемой величины) силы света / (рис. 7.14, б) источника (световой поток изменяется при изменении отражательной способности контролируемой поверхности) угла наклона а светочувствительной поверхности.  [c.158]

Излучательная и отражательная способности поверхности зависят от материа.аа, температуры, последняя.  [c.27]


ВОДНОСТЬ мала, лучистая энергия проникает глубоко и основная ее доля поглощается. Отражательная способность диэлектриков мала.  [c.28]

Для металлов (гелиоприемники, как правило, изготовлены из металла) с увеличением длины волны спектральная лучеиспускательная способность падает, а отражательная способность увеличивается. В длинноволновой области спектра металл обладает значительным отражением. Если на металле создать тонкую пленку, сильно поглощающую длинноволновые лучи, то можно получить идеальную для теплового гелиоприемника поверхность, так как видимые и близкие инфракрасные лучи, на которые приходится большая часть солнечной энергии, поглощаются пленкой (покрытие имеет высокое значение е, а/гл ). Учитывая то, что температуры гелиоприемников при использовании концентраторов солнечной энергии достигают 1000 К, для этих целен необходимо применять высокотемпературный класс покрытий.  [c.217]

Содержание в различных почвах фосфора, калия и азота, а также продуктивность растительности образуют зеркально-симметричный ряд, который также подчиняется золотой пропорции. Даже по отражательной способности света почвы делятся на ряд, характеризуемый числами Фибоначчи [5].  [c.163]

Какая доля света не пропускается металлом вследствие отражения и какая задерживается в нем благодаря поглощению, зависит от его проводимости. В идеальном проводнике, где потери на джоулево тепло вообще отсутствуют, поглощение равно нулю, так что падающий свет полностью отражается. Очень чистые серебряные пленки, применяемые в интерферометрах Фабри—Перо, приближаются к этому идеалу. Удавалось изготовить пленки, у которых отражение достигало 98—99%, а поглощение составляло около 0,5%. Особенно высока отражательная способность (до 99,8%) такого хорошо проводящего металла, как натрий, и поглощение в нем соответственно незначительно. В металлах, хуже проводящих, например в железе, отражение может составлять всего лишь 30— 40%, так что непрозрачная пленка железа толщиной не более доли микрона поглощает около 60% падающего на нее света.  [c.489]

При сравнительно небольших частотах (инфракрасные лучи) оптические свойства металла обусловливаются главным образом поведением свободных электронов. Но при переходе к видимому и ультрафиолетовому свету начинают играть заметную роль связанные электроны, характеризующиеся собственной частотой, лежащей в области более коротких длин волн. Участие этих электронов обусловливает, так сказать, неметаллические оптические свойства металла. Так, например, серебро, которое в видимой области характеризуется очень большим коэффициентом отражения (свыше 95%) и заметным поглощением, т. е. типичными оптическими особенностями металла, в области ультрафиолета обладает резко выраженной областью плохого отражения и большой прозрачности вблизи X = 316 нм отражательная способность серебра падает до 4,2%, т. е. соответствует отражению от стекла. Ниже приведены коэффициенты отражения серебра (в процентах) для разных длин волн при нормальном падении  [c.490]

Указание. При косом падении отражательная способность зависит от характера поляризации следовательно, и поглощательная способность зависит от угла падения и характера поляризации.  [c.904]

В голографической схеме, основанной также на методе локального опорного пучка, но применимой для непрозрачных объектов (рис. 14, б), опорный пучок с помощью линзы фокусируется в некоторую точку на объекте, в которой для увеличения отражательной способности и формирования необходимого пучка наклеивают плоское или сферическое зеркало. Поскольку при смещении объекта как жесткого целого в опорный и объектный пучки вносится одинаковый фазовый сдвиг, картина интерференционных полос будет отражать только деформацию поверхности. Эти схемы нашли широкое применение при анализе ко-  [c.49]

Зеркала 5] и (см. рис. 35.7) могут иметь разные коэффициенты отражения. При. малых кус используются зеркала с высоким коэффициентом отражения. При больших кус выбираются зеркала с меньшей отражательной способностью. В каждо.м частном случае есть свои оптимальные значения Я. Если оба зеркала имеют Я<1, излучение выходит в обе стороны.  [c.278]

В этом случае все факторы, увеличивающие поглощательную способность, одновременно уменьшают отражательную способность поверхности.  [c.248]


Поглощательная, а следовательно, и отражательная способности твердых тел зависят не только от природы тела, состояния поверхности и ее температуры, но и от распределения падающего  [c.428]

Полированные металлические поверхности обладают большой отражательной способностью.  [c.429]

К количественным показателям коррозии помимо перечисленных ранее показателя склонности к коррозии / t, очагового показателя коррозии Кп, глубинного показателя коррозии Кп, показателя изменения массы Кт, объемного показателя коррозии Кобъемн, токового показателя коррозии i (плотность коррозионного тока), механического показателя коррозии Ка, показателя изменения электрического сопротивления относится также отражательный (или оптический) показатель коррозиы — выраженное в процентах изменение отражательной способности поверхности металла за определенное время коррозионного процесса.  [c.428]

Помимо В111СОКОН коррозионно ) стойкости, к числу положительных свойств серебра следует отнести его высокую пластичность, исключительно высокую теплопроводность, высокую отражательную способность при сравнительно благоприятных механических и технологических показателях. По физическим свойствам серебро близко к меди, а ио механической ирочиости оно уступает никелю и нержавеющей стали.  [c.275]

Покрытия алюминием, наиоши-ите иснарением I вакууме, об-,задают хорошей отражательной способностью (около 90%) и не тускнеют со временем.  [c.325]

Для коэффициентов излучения, отражения, поглощения и пропускания мы будем использовать обозначения е, р, а и т соответственно. Термины коэффициент излучения , коэффициент отражения и т. д. относятся к реальным поверхностям и включают эффекты геометрии поверхности. Такие термины, как излучательная способность или отражательная способность , относятся к идеальным гладким поверхностям, и их использование ограничивается дискуссией об отверстии в полости черного тела. Полезным иногда термином является и коэффициент яркости Я, который определяется как отно-щение потока излучения, отраженного от элемента поверхности в специфических условиях излучения и наблюдения, к потоку, отраженному идеальной, полностью отражающей, полностью диффузной поверхностью, излученному и наблюдаемому таким же образом.  [c.323]

В различных областях техники довольно часто встречаются случаи, когда требуется уменьшить передачу теплоты пзлученпем. Например, нужно оградить рабочих от действия тепловых лучей в цехах, где имеются поверхности с высокими температурами. В других случаях необходимо оградить деревянные части зданий от лучистой энергии в целях предотвращения воспламенения следует защищать от лучистой энергии термометры, так как в противном случае они дают неверные показания. Поэтому всегда, когда необходимо уменьшить передачу теплоты излучением, прибегают к установке экранов. Обычно экран представляет собой тонкий металлический лист с большой отражательной способностью. Температуры обеих поверхностей экрана можно считать одинаковыми.  [c.471]

Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве едст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванические ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестяпщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51.  [c.234]

Рис. 7,14, Схемы фотоэлектрических преобразователен, основанных на перекрытии зрачка (а) и изменени отражательной способности (б) Рис. 7,14, <a href="/info/220256">Схемы фотоэлектрических</a> преобразователен, основанных на перекрытии зрачка (а) и изменени отражательной способности (б)
Испытания в вакууме. Стабильность оптических характеристик покрытий — их излучательная и отражательная способность — во многом определяется состоянием поверхности. В свою очередь состояние поверхности зависит от собственной температуры покрытия, а также от цротекания различных процессов, возникающих в результате взаимодействия между поверхностным слоем вещества покрытия и окружающей средой. В этом плане осогбый интерес представляет проведение испытаний по установлению постоянства оптических свойств покрытий или одновременном воздействии высоких температур и вакуума. В этом случае излучательная способность будет зависеть не только от температуры, но и от упругости пара вещества покрытия. Испарение покрытия изменяет характеристики излучения и размеры детали. Для определения скорости испарения при эксплуатационных условиях (температура и давление) проводятся испытания в специальных камерах. Наиболее простым и чувствительным является метод испарения с открытой поверхности в вакууме (метод Ленгмюра). Образец с покрытием помещают в вакуумную камеру и нагревают до требуемой температуры, после чего он выдерживается в этих условиях в течение определенного времени. Одна из подобных камер показана на рис. 7-14 [52]. Молекулы испаряющегося покрытия конденсируются на холодных стенках камеры. Для определения скорости  [c.180]


Действие облучений на покрытия определяется с помощью оценки их оптических свойств до и после облучения. Для этой цели в камеру вмонтировано устройство, которое включает в себя интегрирующую сферу, соединенную со спектрографом. Интегрирующая сфера оборудована специальны.м прнемнико.м и фотоумножнтелыюй детекторной систе.мой, что позволяет проводить оптические измерения, не вынося испытуемый образец из камеры. После проведения облучения столик, на котором закреплены образцы покрытий, с помощью специальной штанги подни.мается вверх по цилиндрической камере и устанавливается против оптической аппаратуры. После этого производится измерение степени черноты и отражательной способности покрытий. На установке. можно проводить как раздельное облучение заряженными частица.мп и ультрафиолетовым потоком, так и совместное.  [c.183]

Шероховатость влияет на прочность деталей, так как впадины неровностей поверхности являются концентраторами напряжений и способствуют разрушению, особенно при переменных нагрузках. У.меньшение шероховатости поверхности деталей повышает их сопротивление усталости, а также коррозиестой-кость. При недостаточно гладких трущихся поверхностях в подвижных соединениях соприкосновение их происходит в отдельных точках, смазка в этих местах выдавливается, нарушается непрерывность масляной пленки и создаются условия для полусухого и сухого трения. Это приводит к повышенному износу поверхностей и увеличению трения. Шероховатость поверхности также влияет на размеры зазоров и натягов в соединениях, плотность и герметичность соединений, отражательную способность поверхности, точность измерения деталей и т. д. Шероховатость нормируется по ряду параметров, устанавливаемых ГОСТ 2789-73,  [c.103]

Интерферометр Фабри-Перо. Интерферометр Фабри — Перо состоит из двух стеклянных или кварцевых пластин (Ях и Яз). Внутренние поверхности их (рис. 5.20) плоские (с точностью до Vioo длины волны), строго параллельны друг другу и частично покрыты прозрачной пленкой с высокой отражательной способностью (/ я= 0,9—0,99). С целью устранения вредного влияния света, отраженного внешними поверхностями пластин, делают обычно так, чтобы последние составляли небольшой угол с внутренними поверхностями. Пластинки могут передвигаться в перпендикулярном направлении друг относителыю друга. Первоначально в интерферометрах одна пластинка оставалась неподвижной, а другая перемещалась (удалялась или приближалась) с помощью специального винта относительно первой. В более поздних интерферометрах  [c.113]

Наличие в металлах металлической связи придает им ряд характерных свойств высокую тепло- и электропроводность, термоэлектрическую эмиссию, т.е. способность испускать электроны при нагреве, хорошую отражательную способность, т.е. обладают мета11лическим блеском и непрозрачны положительный температурный коэффициент электросопротивления, i.e. с повышением температуры электросопротивление увеличивается.  [c.273]

Таким образом, характерная особенность металла, состоящая в его высокой отражательной способности и проявляющаяся в наличии особого металлического блеска чистой (не покрытой окислами) поверхности металлов, связана с электропроводностью металла. Чем больще коэффициент электропроводности, тем, вообще говоря, выше отражательная способность металлов.  [c.489]

Независимо от деталей теории представляется вероятным, что матричные элементы и энергии возбужденных состояний в сверхпроводящей и нормальной фазах отличаются только при энергиях возбуждени11 порядка /сГкр,. То, что они совпадают при более высоких энергиях, доказывается тем, что отсутствует какое-либо различие в отражательной способности в инфракрасной области при длине волп 10 ц [57] ).  [c.716]

Для большинства твердых тел пропускательной способностью можно пренебречь, тогда по1 лощательная и отражательная способности оказываются связанными между собой уравнением (1.7).  [c.428]


Смотреть страницы где упоминается термин Отражательная способность : [c.8]    [c.450]    [c.27]    [c.30]    [c.193]    [c.235]    [c.239]    [c.103]    [c.97]    [c.156]    [c.47]    [c.247]    [c.429]   
Теплотехнический справочник Том 2 (1976) -- [ c.184 ]

Теплотехнический справочник том 2 издание 2 (1976) -- [ c.184 ]

Основы оптики Изд.2 (1973) -- [ c.57 , c.57 , c.74 , c.80 , c.117 , c.298 ]

Основы теплопередачи в авиационной и ракетно-космической технике (1992) -- [ c.286 ]



ПОИСК



Граничные условия. Соотношения между амплитудами волн. Коэффициент отражения. Связь между отражательной и поглощательной способностями Задачи

Дифракционная решетка вогнутая отражательная разрешающая способность

Диффузная и зеркальная составляющие отражательной способност

Излучательная, поглощательная и отражательная способности различных тел

Кривые отражательная способность—-толщина пленки

Кристаллы-монохроматоры отражательная способность

Металлические покрытия, отражательная способность

Обобщенный зональный метод для замкнутой системы серых поверхностей, имеющих диффузную и зеркальную составляющие отражательной способности

Определение коррозии по изменению отражательной способности поверхности металла

Отражательная УВТ

Отражательная и пропускательная способности полупрозрачных сред

Отражательная способность in пел еччичич

Отражательная способность МИОГССЛО [НОИ истомы

Отражательная способность идеальных поверхностей две диэлектрические среды

Отражательная способность идеальных поверхностей две диэлектрические среды диэлектрическая и проводящая среды

Отражательная способность идеальных поверхностей две реальных поверхностей, влияние окисления

Отражательная способность идеальных поверхностей две экспериментальные данные

Отражательная способность л. к. покрыти

Отражательная способность металлов

Отражательная способность толстой

Отражение излучения, влияние глубоких полостей отражательная способность

Отражение излучения, влияние глубоких полостей полусферическая отражательная способность

Полусферическая отражательная способность полубесконечной сред

Полусферическая отражательная способность полубесконечной сред плоского слоя

Полусферически-направленная отражательная способность

Приложение П.9. Исследование отражательной способности стеклянной поверхности

Р-аш иац иоиные свойства юриоповерхностей влияние толщины слоя отражательная способност

Способность разрешающая отражательного эшелона Майкельсопа

Способность стенок отражательная

Термоэмиссия Щербина Определение отражательной способности материалов по индикатрисе отражения в широком интервале температур



© 2025 Mash-xxl.info Реклама на сайте