Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые частные задачи теории упругости

Для некоторых классов плоских задач теории упругости в полярных координатах можно указать их частные решения. Тривиальное решение  [c.153]

На практике обычно встречаются с прямой задачей теории упругости, общего метода решения которой пока не получено, но найден ряд частных решений путем ограничения области исследования. При решении некоторых из таких частных задач бывает удобно принимать за основные неизвестные компоненты напряжений, так как они проще связаны с нагрузкой тела, чем другие неизвестные, входящие в систему основных уравнений теории упругости. При решении других задач удобнее принимать за основные неизвестные перемещения, так как этих неизвестны с меньше (всего три, а не шесть). В соответствии с этим различают две основные схемы решения прямой задачи в одной разыскивают шесть компонентов напряжений, в другой — перемещения.  [c.21]


Как было показано, решение задач теории упругости сводится к некоторым типовым краевым задачам для систем уравнений с частными производными. Фактическое построение решений этих уравнений с заданными начальными и граничными условиями даже при современном уровне развития математических методов и вычислительной техники не всегда оказывается осуществимым. Поэтому представляется целесообразным рассмотреть вопрос о возможности такого изменения краевых условий, чтобы модифицированная задача оказалась более доступной для решения, чем исходная, а различие в результатах было пренебрежимо малым (по крайней мере в значительной части  [c.257]

Изложенное выше показывает, что контактные задачи (а также задачи теории упругости для тел с разрезами, см. 8) могут быть сведены к сингулярным интегральным уравнениям, решение которых в свою очередь можно свести к краевой задаче Римана. Однако в некоторых частных случаях удается свести проблему сразу к краевой задаче Римана [38].  [c.416]

В некоторых случаях решение задачи теории упругости оказывается таким, которое содержит трансцендентные функции от операторов. В качестве примера можно привести построенное в 12.13 решение задачи об осесимметричном изгибе круговой цилиндрической оболочки. Решение соответствующего однородного уравнения для упругой оболочки строится из частных решений  [c.600]

В этом параграфе приводятся решения некоторых задач теории упругости, не требующие интегрирования дифференциальных уравнений в частных производных. Решение этих задач получается с помощью логических рассуждений и простейших вычислений. При этом будет показано, что все основные соотношения теории упругости выполняются. На основании теоремы единственности можно сделать вывод, что эти решения правильны и единственны.  [c.341]

В общем случае пространственная задача теории упругости сводится к решению сложной системы дифференциальных уравнений в частных производных. Но существует обширный класс практически важных задач, для которых путем введения некоторых допущений основная система дифференциальных уравнений существенно упрощается. Этот класс задач объединяется одним общим названием — плоская задача теории упругости. Различают два основных вида плоской задачи — плоскую деформацию и плоское напряженное состояние.  [c.344]


Обычно задачу о магистральных трещинах, развивающихся, в твердых телах, решают для прямолинейных трещин в предположении, что линия распространения трещины задана. Можно отказаться от этого ограничения, если рассматривать последовательность решений задачи теории упругости для одинаковых тел, каждое из которых содержит некоторый разрез (трещину), произвольной конфигурации. Эта последовательность составляет класс допустимых функций, из которых частное решение, отвечающее равновесию тела с трещиной, выбирается с помощью излагаемого здесь вариационного принципа.  [c.31]

Потенциал перемещений Ф связан с компонентами перемещений соотношениями Uf = Ф, , и любое частное решение (6.36) позволяет учесть неравномерное распределение температуры в поперечном сечении тела. После определения соответствующих этому частному решению контурных перемещений и напряжений можно перейти к решению обычной задачи теории упругости. Полное решение задачи термоупругости тогда выражается через частное решение (6.36) и решение задачи теории упругости [5]. В некоторы случаях этот путь приводит к получению аналитических выражений для перемещений и напряжений.  [c.228]

В книге изложена теория одного наиболее часто встречающегося типа трещин технологического происхождения, так называемых горячих трещин. Дефекты такого рода имеют первостепенное значение в сварочном и металлургическом производствах. Дан простой общий метод точного решения автомодельных динамических задач теории упругости. В качестве примеров рассмотрены некоторые контактные задачи и задачи о трещинах. Рассмотрена динамическая прочность толстостенных цилиндрических оболочек при статических, динамических и случайных нагрузках. Приведено точное решение пространственной задачи теории упругости для внешности эллипсоидального отверстия, находящегося в тяжелом полупространстве. Для наиболее интересных частных случаев получены общие условия устойчивости выработок. Предлагается теория горного удара, а на ее основе — некоторые меры, которые могут служить для управления этим явлением.  [c.4]

У е S. Так как одновременно эти векторы на границы заданы быть не могут, то формула (2.29) непосредственного практического применения не имеет. Но, как мы увидим далее, она может быть использована для получения многих важных результатов. Рассмотрим изотропную среду. Прежде чем получить явное выражение перемещений Кельвина, построим некоторые важные частные решения статической задачи упругости, т.е. решения, которые удовлетворяют уравнениям Ламе (1.72), но не обязательно удовлетворяют граничным условиям. Такие частные решения обычно разыскиваются с помощью вектора перемещения через не которые векторы, удовлетворяющие уравнениям более простым, чем уравнения Ламе, например уравнению Лапласа или Пуассона, однородному или неоднородному бигармоническому уравнению. Такое выражение принято называть представлением решения задачи теории упругости. Применим к уравнениям (1.72) один раз оператор div, а другой раз оператор Лапласа Д = Тогда получим соответственно  [c.86]

Наличие этих данных позволяет нам при помощи формулы (2.301) (см. главу II книги) вычислить главные нормальные напряжения Р и Q в отдельности. Авторы применяют этот способ графического интегрирования при решении различного рода задач, рассматриваемых в книге. Однако, помимо этого способа графического интегрирования, существует ряд других способов, которые также дают возможность на основе данных эксперимента вычислить Р и Q в отдельности. Больше того, можно привести некоторую общую теорию графического интегрирования уравнения равновесия плоской задачи теории упругости, при наличии данных оптического метода изучения напряжений, из которой формула (2.301) вытекает как частный случай.  [c.577]


Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]

Замечание. Мы привели в разд. 3.1—3.3 ряд характерных постановок задач теории упругости и теперь перейдем к анализу некоторых их свойств на основе общих представлений решений уравнений теории упругости. Однако прежде отметим, что многие специфические постановки краевых задач теории упругости возникают в тех случаях, когда имеет место тот или иной вид вырождения системы дифференциальных уравнений теории упругости из-за наличия среди геометрических характеристик упругого тела одного или двух малых параметров (модели стержней, балок, пластин, оболочек) [90, 93]. Ситуация здесь вполне аналогична той, что имеет место в общей теории дифференциальных уравнений в частных производных. Некоторые методы и результаты построения оценок решений для таких вырожденных задач обсуждаются в гл. 10.  [c.85]

Многие важные задачи теории упругости, в том числе и задачи, рассмотренные в отделах II и III предыдущей главы, могут быть чрезвычайно просто решены путем приведения к одной граничной задаче теории функций комплексного переменного, которую я называю задачей линейного сопряжения граничных значений, или, короче, задачей сопряжения ). Формулировка этой задачи и ее решение для некоторых частных случаев (которые только и понадобятся нам в дальнейшем) будут даны в отделе I этой главы.  [c.383]

Рассмотрим задачу о полубесконечном упругом теле г>0 предположим, что на граничной плоскости г=0 заданы отвечающие условиям осевой симметрии либо нормальные Ог (или касательные т) напряжения, либо компоненты перемещений и и V. Эта группа задач теории упругости исследовалась общими методами, основанными на теории потенциальных функций. Естественно, что в данной книге не представляется возможным дать даже краткий обзор общих методов решения этих задач ). Мы ограничиваемся изложением лишь одного специального способа построения решений, в котором используются некоторые частные интегралы уравнений (7.9) и (7.10). При этом мы основываемся на более общем методе, описанном в цитированной в примечании книге Римана—Вебера, используя важную группу решении вида 1 г)Я[г). Одна из комбинаций интегралов для и, удовлетворяющих уравнению (7.9), имеет вид  [c.289]

В зависимости от постановки для решения задач теории упругости могут применяться различные интегральные преобразования. При этом получаются точные решения для напряжений и перемещений в форме несобственных интегралов, сходимость которых обеспечена. Обычно они оцениваются численно, в замкнутой форме обратное преобразование возможно лишь в частных случаях. Некоторые примеры обсуждаются в последующих параграфах 8.6 и 9.6.  [c.127]

Из этого перечня видно, что книга не претендует на освещение всех вопросов теории упругости анизотропного тела, а излагает только некоторые, наиболее изученные, но еще не приведенные в систему. В ней не содержится исследований по изгибу и устойчивости анизотропных пластинок, так как эти вопросы достаточно полно разработаны в нашей книге <Анизотропные пластинки . Задача о плоской деформации и обобщенном плоском напряженном состоянии изложена сжато (в связи с более общей задачей), причем из частных случаев рассмотрены только наиболее важные. В книге не затронуты проблемы равновесия и устойчивости анизотропных оболочек, а также динамики упругого тела (за исключением общих уравнений движения) Во всех случаях предполагается, что деформации являются упругими и малыми, а материал следует обобщенному закону Гука. В конце имеется перечень литературы, куда, кроме работ, излагающих специальные вопросы, включены также некоторые основные курсы теории упругости.  [c.12]

Воспользуемся операторным методом отыскания частного решения для упругой среды [84]. Получающееся решение отличается простотой, ввиду того что выражается через интегралы от поля температуры и его градиентов. Таким образом, некоторые динамические задачи можно свести к соответствующим задачам теории упругости. Применяемые методы требуют многократного интегрирования и знания элементарного решения. Последнее, однако, возможно лишь для немногих конфигураций тела.  [c.268]


Предположение о плоскопараллельности приемлемо только в частных задачах, например в задаче аэродинамики о движении перпендикулярно к своей образующей бесконечного цилиндрического крыла в газе или жидкости, в некоторых задачах о волнах на поверхности тяжелой жидкости, в ряде задач теории упругости, например в задаче о равновесии длинной цилиндрической балки, поперечное сечение которой находится под действием произвольно расположенных в его плоскости внешних статически равных нулю нагрузок, когда нагрузки не зависят от продольной координаты, а перемещения в продольном направлении запрещены условиями закрепления, и т. д.  [c.343]

Вопросам усреднения уравнений с частными производными и их приложениям посвящена обширная литература. Настоящая книга почти не имеет пересечений с другими монографиями, в которых излагаются задачи усреднения дифференциальных операторов. Особое внимание в ней обращено на задачи, связанные с линейной стационарной системой теории упругости. Поэтому для удобства читателя первая глава книги содержит материал, относящийся к исследованию стационарной системы теории упругости. В ней рассматриваются вопросы существования и единственности решений основных краевых задач теории упругости, неравенства Корна и их обобщения, априорные оценки решений и их свойства, краевые задачи в так называемых перфорированных областях и свойства их решений, а также приводятся некоторые вспомогательные сведения из функционального анализа. Все эти результаты используются в последующих главах, многие из них излагаются впервые.  [c.6]

Н. Н. И р о X о р о в, В. С. И г н а т ь е в а. Решение задачи о фазовых напряжениях при сварке закаливающихся сталей, как частный случай решения температурной задачи теории упругости. — Сб. Сварка цветных сплавов и некоторых легированных сталей , 106, МВТУ, Оборонгиз, 1962, стр. 38—46.  [c.301]

Корпусные детали представляют собой в основном пустотелые конструкции из однородного материала. Поэтому решение поставленной задачи может быть выполнено средствами статической и динамической теории упругости изотропного тела. Решить точно известные системы дифференциальных уравнений теории упругости в частных производных для таких пространственных тел, какими являются корпусные детали, в настоящее время не представляется возможным. Точное решение задачи теории упругости пока получено при некоторых частных видах нагружения только для полупространства, бесконечного слоя, шара, цилиндра и др. [40].  [c.13]

Касаясь современного состояния теории расчета муфт с упругими элементами из высокоэластичных материалов, следует отметить, что она в отличие от достаточно хорошо развитой теории муфт с металлическими упругими элементами находится лишь на стадии становления. Имеющийся в отечественной и зарубежной технической литературе материал по этому типу муфт либо носит описательный характер, либо посвящен решению некоторых частных задач. Это, естественно, затрудняет работу конструкторов, занимающихся проектированием приводов с упругими муфтами, сдерживает процесс совершенствования конструкций муфт. Особенно остро отсутствие методов расчета муфт с резиновыми упругими элементами проявилось в период наметившейся их стандартизации, когда перед разработчиками стандартов встал вопрос о создании технически обоснованных параметрических рядов муфт и разработке конструкций муфт с высоким уровнем качества.  [c.3]

Учебник для вузов, в которых сопротивление материалов изучается по полной программе. Книгу в целом отличает глубоко продуманная последовательность изложения - от частного к общему - и разумное повторение материала, позволяющее глубже вникнуть в существо вопроса. В первой части дается традиционный курс сопротивления материалов в элементарном изложении. Во второй части приводятся дополнения по некоторым вопросам, рассмотренным в первой части, а также рассматриваются задачи, требующие применения методов теории упругости. Таковы, например, задачи о кручении стержней, о местных напряжениях, об изгибе пластинок, о кручении тонкостенных стержней. Для возможности более обоснованной трактовки таких задач в книгу включен раздел, посвященный основным уравнениям теории упругости и некоторым наиболее простым задачам этой науки.  [c.234]

Ряд важнейших исследований по аналитическим методам решения задач механики принадлежит знаменитому русскому математику и механику М. В. Остроградскому (1801 —1861). Он установил очень важный вариационный принцип динамики — принцип наименьшего действия, позволяющий сводить изучение движения механических систем к некоторой экстремальной задаче. Этот принцип называется принципом Остроградского — Гамильтона, так как независимо от Остроградского и в несколько менее общем виде он одновременно также был дан английским ученым Гамильтоном (1805— 1865). М. В. Остроградский решил также много частных механических задач в области гидростатики, гидродинамики, теории упругости, теории притяжения и баллистики.  [c.16]

Точное решение в аналитической форме уравнений теории упругости при соблюдении граничных условий, что составляет так называемую краевую задачу, возможно лишь в некоторых частных случаях нагружения тел и условий их закрепления. Поэтому для инженерной практики имеют особо важное значение приближенные, но достаточно общ,ие методы решения задач прикладной теории упругости.  [c.228]

Развитие техники за последние десятилетия связано с применением новых материалов и широким использованием в конструкциях различного рода гибких элементов и вызвало необходимость решения задач, которые являются предметом нелинейной теории упругости. Эти задачи могут быть либо геометрически нелинейными (когда тела не обладают достаточной жесткостью, например гибкие стержни), либо физически нелинейными (когда тела не подчиняются закону Гука), а также геометрически и физически нелинейными (когда детали изготовлены из резины или некоторых пластмасс). Во всех этих задачах непременными свойствами модели являются сплошность и идеальная упругость, а возможность других свойств, конкретизирующих ее, определяется особенностями абстрагируемого твердого тела. Нелинейная теория упругости, таким образом, имеет еще более общий характер и решает весьма широкий круг задач, постоянно и неизбежно выдвигаемых современной техникой. Это не принижает фундаментального значения линейной теории упругости и не обязывает получать зависимости последней как частный случай значительно более сложных соотношений нелинейной теории упругости. Напротив, познания теории упругости должны начинаться с изучения исторически первой и наиболее разработанной линейной теории упругости, которая в этом отношении должна носить как бы пропедевтический характер.  [c.5]

В книге особое внимание уделено формулировке критериев упругой устойчивости, постановке задач устойчивости стержней, пластин и оболочек, выводу исходных соотношений и обсуждению пределов применимости полученных расчетных зависимостей. Автор умышленно стремился избегать ярких нестандартных задач, красивые и неожиданные решения которых доставляют истинное наслаждение специалистам, но отпугивают многих студентов и вызывают недоумение у некоторых инженеров-прак-тиков. У автора было опасение, что интересные частные задачи могут отвлечь читателя от более прозаичных, но не менее тонких общих вопросов теории устойчивости,  [c.6]


При изложении основных уравнений теории упругости мы не останавливались иа вариационных принципах и основанных на них методах приближённого решения частных задач теории упругости. Эти методы получили применение к рассмотрению некоторых пространственных задач в работах М, М. Филоиенко-Бородича Задача о равновесии упругого параллелепипеда прн заданных нагрузках на его гранях (Прикл. матем. и мех. 15, №2, 1951). Две задачи о равновесии упругого параллелепипеда ) (там же, № 5, 1951), Некоторые обобщения задачи Ляме для упругого параллелепипеда (там же 17, № 4, 1953) и Г. С. Шапиро Некоторые задачи о деформациях стержней переменного сечения (там же 17, № 2, 1953).  [c.70]

Книга содержит нетрадиционное изложение курса теории упругости, базирующегося на специальных разделах теории дифференциальных уравнений в частных производных и математического анализа. В первой главе в достаточно компактной форме дается конспективное изложение тех математических дисциплин, которые уже с успехом используются и могут быть использованы в дальпейи1ем при решении на современном уровне различных задач теории упругости. Две следующие главы посвящены концентрированному, по вместе с тем достаточно полному изложению собственно предмета теории упругости, включая такие сравнительно новые разделы, как. злектромагнитоупругость и механика хрупкого разрушения, постановке краевых задач, а также изложению некоторых приемов сведения краевых задач теории упругости к классическим задачам математической физики, В остальных главах книги (главы VI—VIII) конкретные математические методы, указанные в заглавии, применяются к решению определенных классов задач теории упругости. В ряде случаев эффективность того или иного метода демонстрируется на примерах таких задач, решение которых было получено только в последнее время. Большое внимание уделяется как вопросам строгого математического обоснования тех или иных алгоритмов, так и приемам их численной реализации.  [c.2]

Теория сингулярных интегральных уравнений переносится на системы, причем в этом случае важнейшими понятиями становятся понятия о символической матрице и символическом определителе (составленных из символов каждого элемента). На системы обобщается установленный выще результат о возможности левой регуляризации, причем условием такой регуляризации является неравенство символического определителя нулю. В общем случае, правда, это условие не оказывается достаточным. Установлены [35], однако, некоторые частные виды систем сингулярных уравнений, для которых это условие достаточно. К таковым, например, относятся системы, для которых символическая матрица эрмитова (ац = —а,,). Именно этот случай и имеет место в сингулярных интегральных уравнениях, соответствующих основным пространственным задачам теории упругости.  [c.62]

Воспользуемся этими представлениями для получения удобных (в плане решения краевых задач) представлений частных решений задач теории упругости для шара и пространства с шаровой полостью. Применим для построения указанных гармонических функций метод разделения переменных. Зададим некоторое целое положительное число п. Тогда согласно изложенному в 10 гл. I следует, что ввиду осевой симметрии проекции вектора ф на оси координат х а у можног выбрать в виде  [c.333]

Теория толстых плит, основанная на уравнениях равновесия и неразрывности упругого изотропного тела, на которое действуют только поверхностные силы, была построена Мичеллом [143] и подробно рассмотрена Лявом [58, 299]. С помощью ее были решены только некоторые частные задачи, а поэтому встала необходимость создания технических теорий расчета. Большинство этих теорий связано с учетом касательных напряжений и и использованием трех граничных условий Пуассона для каждого края. Укажем некоторые из этих теорий.  [c.131]

I. Вводные замечания. В настоящем параграфе рассматривается пример применения аппарата плоской задачи теории упругости — задача о напряженном состоянии бесконечного клнна, загруженного сосредоточенной силой, приложенной к вершине и направленной вдоль оси его симметрии. Обсуждается и частный случай этой задачи — напряженное состояние полубесконеч-ной плоскости, загруженной сосредоточенной силой, приложенной нормально к прямолинейной кромке. Наконец, в этом же параграфе приводится таблица с результатами решения некоторых других задач.  [c.678]

Как мы уже говорили, решение данной задачи для малой окрестности любой точки гладкого фронта (рис. 42) можно считать не зависящим от координаты г, отсчитываемой вдоль фронта трещины (рис. 46). Самый общий случай полей деформаций и напряжений у кончина трещины могкио получить путем взаимного наложения напряжений следующих частных видов плоской и антнплоской деформаций (рис. 47). Вид 7 связан с отрывным смещением, при котором поверхности трещины прямо расходятся одна от другой во взаимно противоположных направлениях (так происходит при забивании клина). Вид 77 соответствует перемещениям, при которых поверхности трещины скользят друг по другу (так, например, снимает стружку резец токарного станка). Вид 777 связан с антиплоской деформацией (разрезание ножницами), при которой одна поверхность скользит по другой параллельно фронту трещины. Решения этих задач, очень сложные в математическом отношении, были получены в пятидесятые годы. Оказалось, что для любых задач теорий упругости поля напряжений и смещений вблизи вершины трещины имеют почти одинаковую структуру. Первыми поняли это английские ученые Дж. Ирвин и М. Вильямс, хотя строгое доказательство общности формул было дано позже. Сейчас мы приведем все формулы, описывающие распределение напряжений и смещений, прпчем многоточия в них ставятся вместо слагаемых, которые пренебрежимо малы по сравнению с выписанными. Мы приводим эти довольно громоздкие выражения совсем ие для того, чтобы лишний раз вызвать трепет перед механикой разрушения. Наша задача — обратить впимаипе на некоторые их общие свойства и постараться сделать для себя поучительные выводы. Все  [c.76]

В 1850 г. в Эдинбургском королевском обществе Максвеллом был прочитан доклад О равновесии упругих тел ( Оп the equilibrium of elasti solids ). Автор начинает в нем с критики теории малого числа упругих постоянных, ссылаясь при этом на работу Стокса ), и выводит уравнения равновесия изотропных тел, применяя две упругие постоянные. Он использует затем уравнения для рассмотрения некоторых частных задач. Большая часть их была уже решена раньше другими авторами, но никто из них до сих пор еще не уделял такого внимания опытной проверке теоретических результатов. Он останавливается на случае полого цилиндра, наружная поверхность которого неподвижна, внутренняя же поверхность приводится во вращательное движение на малый угол ой парой, момент которой равен р. . Используя уравнения равновесия в полярных координатах, он без труда показывает, что в этих условиях возникают касательные напряжения и что их величина обратно пропорциональна квадрату расстояния рассматриваемой точки от оси цилиндра.  [c.323]

Установление этих связей в аналитической форме позволяет (А. Я. Александров см. ниже) выразить напряжения и смещения осесимметричного состояния через аналитические функции комплексного переменного, а это дает в свою очередь возможность свести осесимметричные задачи упругого равновесия к граничным задачам теории аналитических функций. К этим последним задачам в ряде случаев можно применить метод степенных рядов. При помощи этих же комплексных представлений осесимметричного напряженного состояния удается в частных случаях, например для шара и пространства с шаровой полостью, получить решение основных задач в замкнутой форме (в квадратурах). С этими и некоторыми другими результатами применения теории аналитических функций к пространственным задачам теории упругости можно познакомиться по работам А. Я. Александрова- [1—6], А. Я. Александрова и В. С. Вольперта [1], А. Я. Александрова и Ю. И. Соловьева [1 ],  [c.631]

Тимпе ) нашел ряд полезных частных решений последних уравнений, разлагая выражения для напряжений в степенные ряды по г и г. Пользуясь этими результатами, он получил некоторые точные решения осесимметричных задач теории упругости, например для толстой упругой пластинки, одна из плоскостей которой нагружена постоянным давлением.  [c.289]

В многочисленных выносках указываются статьи и книги по теории упругости, которые могут иметь практическое значение. Эти указании могут представить интерес для инженеров, которые желают изучить некоторые частные задачи более подробно. Кроме того эти ссылки на лите-рагуру дают представление о современном состоянии теории упругости и могут быть полезны кончающим студентам, которые намерены работать в этой области знаний.  [c.5]


При подготовке этой книги для третьего издания сохранены первоначальные цель и план первого издания—дать инженерам существенные основы знаний по теории упругости в столь простой форме, какую позволяет этот предмет, вместе с набором решений частных задач, важных для инженерной практики и проектирования. Многочисленные ссылки в подстрочных примечаниях показывают читателю, как можно продолжить изучение некоторых вопросов. Поскольку теперь эти ссылки легко пополнить с помощью реферативного журнала Applied Me hani s Reviews, новые ссылки вводились очень экономно. Мелкий шрифт, как и прежде, используется для разделов, которые могут быть пропущены при первом чтении.  [c.12]


Смотреть страницы где упоминается термин Некоторые частные задачи теории упругости : [c.149]    [c.260]    [c.192]    [c.221]    [c.600]    [c.216]    [c.14]    [c.25]    [c.534]   
Смотреть главы в:

Метод расчета движения жидкости  -> Некоторые частные задачи теории упругости



ПОИСК



Задача упругости

Задачи теории упругости

К п частный

Некоторые задачи

Некоторые задачи теории упругости

Некоторые частные задачи

Теория упругости

Упругость Теория — см Теория упругости

Частные задачи



© 2025 Mash-xxl.info Реклама на сайте