Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модели жидкостей и уравнения движения

МОДЕЛИ ЖИДКОСТЕЙ И УРАВНЕНИЯ ДВИЖЕНИЯ  [c.574]

Идеальная или невязкая жидкость является, как указано в гл. I, упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме свойства вязкости. Поэтому для описания движения идеальной жидкости мы вправе применить уравнения Навье—Стокса, положив р = 0. Тогда уравнения движения вязкого газа (5-8) и уравнения движения вязкой несжимаемой жидкости (5-9) упрощаются и принимают вид  [c.106]


Определяющим для последующего развития теории упругости и всей механики сплошной среды явился континуальный подход Коши, разработанный им в 20-х годах. Однако еще раньше толчок для развития теории упругости и гидродинамики вязкой жидкости дали два мемуара Навье, представленные им Парижской академии наук в 1821 и в 1822 гг. В них Навье, следуя П. С. Лапласу и используя феноменологическую молекулярную модель среды, впервые вывел уравнения теории упругости изотропного тела (в смещениях) и уравнения движения несжимаемой вязкой жидкости (так называемые уравнения Навье — Стокса).  [c.48]

Скачок уплотнения. Внутреннюю структуру скачка уплотнения, который в рамках гидродинамики идеальной жидкости заменяется разрывом, следует рассматривать на основе теории, учитывающей диссипативные процессы — вязкость и теплопроводность. В качестве простейшей модели можно использовать уравнение движения вязкой жидкости Навье — Стокса. Уравнения одномерного течения вязкого и теплопроводного газа — течения, стационарного в системе координат, связанной с фронтом ударной волны,— имеют вид  [c.212]

Модель течения несущей среды и уравнения движения частиц. Рассматривается стационарное потенциальное течение несжимаемой жидкости как несущей среды в плоскости переменных X, при аспирации аэрозоля в щель между двумя полу-  [c.108]

Наряду с рассмотренной выше существует и другая модель жидкости, согласно которой жидкость представляет собой систему твердых сфер, движущихся между столкновениями по браунов-ским траекториям, возникающим в результате столкновений вс щд-ствие притягивающей части потенциала. Поскольку последние из отмеченных столкновений нарушают временную корреляцию движения частиц, это движение можно рассматривать как некоррелированное. На основе сделанных предположений можно написать кинетические уравнения для функций распределения и, решая их, найти кинетические коэффициенты.  [c.195]

Для упрощения выводов формул и уравнений, а также доказательства отдельных положений в гидравлике в ряде случаев приходится прибегать к моделям жидкости. Одной из таких широко распространенных моделей является невязкая несжимаемая (идеальная) жидкость, т. е. такая воображаемая жидкость, при движении которой отсутствуют силы внутреннего трения, а также плотность которой не зависит от давления и температуры.  [c.14]


В гидромеханике широко используются математические методы, благодаря чему ряд полученных в ней результатов обладает строгостью и точностью. Однако сложность механической структуры движений реальных жидкостей и газов не позволяет получить такие результаты для большинства случаев, важных для практики, поэтому широко используют приближенные уравнения и приближенные методы их решений. Такие решения требуют обязательной проверки, а иногда и корректировки согласно экспериментальным данным. Кроме того, эксперимент в гидромеханике служит для первичного изучения явлений, без чего нельзя построить достоверные расчетные модели. Поэтому роль эксперимента в гидромеханике весьма значительна. Современные гидродинамические лаборатории представляют собой крупные исследовательские организации со сложным и высокоточным оборудованием.  [c.7]

Более полно свойства реальной жидкости учитываются в модели вязкой несжимаемой жидкости, которая представляет собой среду, обладающую текучестью и вязкостью, но абсолютно несжимаемую. Теория вязкой несжимаемой жидкости лишь в ограниченном числе случаев с простейшими условиями позволяет получить точные решения полных уравнений движения. Наибольшее значение в этой теории имеют приближенные уравнения и их решения. Такие уравнения получают путем отбрасывания в полных уравнениях движения тех членов, которые мало влияют на соответствие теоретических решений результатам опыта. Решения приближенных уравнений могут быть как точными, так и приближенными.  [c.22]

Гидросистема привода представляется как последовательное-соединения труб, местных сопротивлений и гидроцилиндров [1, 72], поэтому модель содержит уравнения движения механической части (а), (б), (в), (г) уравнения связи между давлениями и расходами в гидросети (д), (е), (ж), (з), (м) уравнения и условия, списывающие перемещения подвижных элементов гидросистемы (р) (с) логическое условие разрыва кинематической цепи в зазоре (и) описание вспомогательных переменных (к), (л), (н), (о), (п). Жидкость считается сосредоточенной в сечениях н и е , высокочастотные процессы не рассматриваются, изменение температуры не-учитывается. Объемный модуль упругости смеси масла с воздухом  [c.63]

В 1922 г. Н. Н. Павловский разработал гидромеханическую модель фильтрации и вывел дифференциальные уравнения движения жидкости в пористой среде. Он же впервые предложил использовать параметр Рейнольдса как критерий существования закона фильтрации Дарси [Л. 28, 29].  [c.242]

Экспериментально установлено, что турбулентность характеризуется своеобразной универсальной моделью потока. В течение нескольких последних десятилетий считалось, что существующая в природе действительная турбулентность слишком сложна для непосредственного изучения, и в большинстве работ рассматривалась искусственная схема турбулентности. Сложность, присущая уравнениям движения, не позволяла получать более чем общее описание явления турбулентности, а тем более получить общее решение уравнений турбулентного потока. Фактически первые исследования были так же близки к решению задачи, как и более поздние. Положение усугублялось далее тем, что большинство исследователей считало, что в турбулентном потоке имеет место совершенно хаотическое движение частиц жидкости, а поэтому не существует и не может существовать какой-либо исходной модели потока. Такая точка зрения, т. е. рассмотрение хаотического движения частиц жидкости как явления, аналогичного движению молекул в ламинарном потоке, господствовала на первом этапе развития теории турбулентности. Измерения корреляции показали, что эти частицы имеют определенный размер, однако достоверность этого вывода ограничена возможностью эксперимента. Долгое время не принимался во внимание тот факт, что существует простая и универсальная схема потока, которая и объясняет наблюдаемую корреляцию.  [c.57]

Рекомендации по численному решению задач свободной конвекции в емкостях приведены в [14, 34, 71, 94]. Решения получены до значений чисел Релея 10 . Возможность получения решений при больших числах Релея была показана в (34 ) путем введения автоматической коррекции разностного оператора. Установлено, что при больших числах Релея, когда схемные коэффициенты переноса превосходят молекулярные, для сохранения устойчивости решений и равномерной сходимости следует опустить в уравнениях диффузионные члены. Подход к численному решению уравнений в замкнутой области можно проиллюстрировать па примере свободной конвекции жидкости в горизонтальной трубе. Математическая модель задачи описывается системой уравнений движения, энергии и неразрывности  [c.187]


Система уравнений (19), (22) и (29) представляет собой математическую модель трехколесного ГДТ, работающего на переходных режимах. В отличие от известных, данная модель учитывает влияние ускорений насосного и турбинного колес, а также ускорения потока жидкости в относительном движении на величину углов выхода потока из лопастных колес. Как известно, эти углы входят в формулы для определения внешних и внутренних динамических характеристик ГДТ. Анализ уравнений (19), (22) и (29) показывает, что движение системы с ГДТ при работе на переходных режимах описывается совокупностью нелинейных неоднородных дифференциальных уравнений, точное решение которых невозможно. Приближенное решение этих уравнений целесообразно проводить. численным методом при помощи ЭЦВМ.  [c.25]

Динамическое подобие потоков, вытекающее из уравнений движения, сводится к равенству в объекте и в модели безразмерных критериев (чисел) подобия, выражающих меру отношения импульсов сил (или сил), действующих в жидкости. В общем случае комплекс критериев динамического подобия (обеспечивающих равенство отношений сил) приведен в табл. 1-17. Там же указан физический фактор, учитываемый критерием, и его физический смысл.  [c.61]

Для уравнений плоского двумерного нестационарного движения вязкой среды построен скалярный потенциал - аналог линии частицы жидкости - являющийся переменной лагранжева типа. Дано применение уравнений гидродинамики, записанных в этих переменных, к различным классам конвективных динамических и тепловых процессов. Рассматривались реологические модели жидкостей ньютоновская несжимаемая и сжимаемая, нелинейно-вязкая, вязкоупругая, а также турбулентный поток. Для изотермического процесса удалось построить простое преобразование уравнений А.С. Предводителева (жидкость дискретной структуры) к классическим уравнениям Стокса.  [c.128]

Уравнения Эйлера. Идеальная, т е. лишенная вязкости, жидкость служит одной из моделей реальной жидкости или газа. Пренебрежение вязкостью приводит к существенному упрощению уравнений движения и позволяет в ряде случаев получить эффективные решения, методы расчета и конечные формулы.  [c.19]

Вводные сведения. Основные физические свойства жидкостей и газов. Основы кинематики. Общие законы и уравнения статики и динамики жидкостей и газов. Силы, действующие в жидкостях. Абсолютный и относительный покой (равновесие) жидких сред. Модель идеальной (невязкой) жидкости. Общая интегральная форма уравнений количества движения и момента количества движения. Подобие гидромеханических процессов.  [c.187]

С этой целью он преобразовал уравнения адиабатического течения газа к виду, облегчающему их упрощение, и заменил точные уравнения движения сжимаемой жидкости уравнениями для несжимаемой жидкости. При этом, как показал Чаплыгин, вместо реального газа рассматривается некоторая физическая модель таза, для которого адиабата аппроксимируется касательной к ней ( газ Чаплыгина ).  [c.311]

Математические модели подобных течений с отрывом можно довольно легко построить, используя уравнения движения Эйлера для невязкой жидкости. Основная идея состоит в том, что допускается скачкообразное изменение скорости при переходе через линию тока, что является грубым нарушением гипотезы (Е) из 1. Простые примеры таких течений схематически изображены на рис. 9. В этих течениях все линии тока параллельны друг другу, а области равномерного течения отделены от областей стоячей воды линиями тока, при переходе через которые скорость изменяется скачком. На рис. 9, а изображена идеализированная бесконечная струя поступающая в область неподвижной воды из трубы произвольного поперечного сечения, а на рис. 9, б изображен равномерный поток, отрывающийся от полуцилиндра со стороны среза и обтекающий застойный след позади этого полуцилиндра. В обоих случаях давление можно считать гидростатическим.  [c.76]

В написанных уравнениях функции F, П, е обычно известны. Искомые функции — р, v, т,к, М, я,, t. Таким образом, неизвестных больше, чем уравнений. Общих уравнений сохранения недостаточно для получения замкнутой системы уравнений, описывающей движение сплошной среды. В этих общих уравнениях нет информации о самой среде. Надо ввести модели сплошной среды, которые с некоторой точностью отражали бы действительные свойства жидкости и были бы достаточно удобны для получения замкнутой системы уравнений и ее решения. Во всех моделях, рассматриваемых в этой главе, тензор напряжений симметричен, в силу чего уравнение моментов количества движения приобретает вид (2.5) гл. IV.  [c.70]

Общий анализ осредненных уравнений движения и энергии жидких и газовых смесей был выполнен Трусделлом [320], который подробно рассмотрел случай передачи импульса между составными частями смеси согласно уравнению (3.31) (что соответствует случаю многокомпонентной жидкости) и сформулировал условие нулевого обмена энергией. Вместе с тем Трусделл формально отметил возможности иных определений в моделях взаимопроникающих сред.  [c.31]

Современное состояние механики многофазных сред характеризуется интенсивным развитием теоретических и экспериментальных исследований. Разработаны и математически описаны некоторые идеализированные модели движения таких сред. Возможные модели и соответственно совокупности описывающих зти модели уравнений довольно многочисленны. Очевидно, решения разных задач должны основываться на существенно различных допущениях и упрощающих предпосылках. Следовательно, оправданы стремления создать и математически описать модель, которая для определенного круга задач дает наилучшие результаты в ограниченных пределах при.менения. В рамках каждой модели наиболее простыми оказываются решения квази-одно.мерных задач. Следует отметить, что наиболее законченный ВР1Д и.меет и соответствующий раздел механики гомогенных сред (одномерное движение жидкости и газа). Естественно, что и в книге oy в одномерной трактовке представлены наиболее законченные решения. Вместе с тем широко развернуты теоретические исследования, имеющие целью получить наиболее общие уравнения, описывающие движение многофазной (многокомпонентной) среды полидисперсной структуры при наличии теплообмена, фазовых переходов, с учетом метастабильности и неравновесности процесса. Такие уравнения получены и для некоторых частных случаев решены.  [c.5]


В качестве введения в задачу о взаимодействии многофазной среды с телом oy и Тьен [742] расс.мотрели движение отдельной сферической твердой частицы вблизи стенки, обтекаемой турбулентным потоком жидкости. Теоретический анализ содержал основное уравнение движения, описывающее влияние стенки на двухфазный турбулентный поток, и решение уравнений, включающее лишь наиболее существенные процессы, которые протекают в стацпонарных условиях. Упрощенная физическая модель рассматрпвае.мых явлений представляла собой сферическую твердую частицу в полубесконечном турбулентном потоке жидкости, ограниченном бесконечно протяженной стенкой (фиг. 2.10). Размер частицы предполагался настолько малым в сравнении с раз-меро.м вихря пли микромасштабом турбулентности потока, что вклад различных пульсаций скорости был линеен. Описание характера движенп.ч потока строилось на основе данных по распределению интенсивностей и масштабов турбулентности [105, 418, 468]. Течение, особенно вблизи стенки, является анизотропным и неоднородным. Тем не менее в качестве основного ограничивающего допущения было принято представление о локальной изотропно-  [c.58]

Механика твердого тела, будучи одной из глав общей механики, изучает движение реальных твердых тел. Различие между твердыми телами, с одной стороны, жидкостями — с другой, иногда кажется интуитивно ясным (нанример, сталь и вода), иногда отчетливую границу провести бывает трудно. Лед представляет собою твердое тело, однако ледники медленно сползают с гор в долины подобно жидкости. При прокатке раскаленного металлического листа между валками прокатного стана металл находится в состоянии пластического течения и термин твердое тело по отношению к нему носит довольно условный характер. Неясно также, следует ли отнести к жидким или твердым телам такие вещества, как вар, битум, консистентные смазки, морской и озерный ил и т. д. Поэтому дать определение того, что называется твердым телом затруднительно, да пожалуй и невозможно. В последние годы наблюдается определенная тенденция к аксиоматическому построению механики без всякой апелляции к интуиции и так называемому здравому смыслу . Таким образом, вводятся различные модели, иногда чисто гипотетические, иногда отражающие основные черты поведения тех или иных реальных тел и пренебрегающие второстепенными подробностями. Для таких моделей можно установить некоторый формальный принцип классификации, позволяющий отделить модели жидкостей от моделей твер1а.ых тел, но эта классификация отправляется от свойств уравнений, но не тел как таковых. Поэтому термин механика твердого тела будет относиться скорее к методу исследования, чем к его объекту.  [c.16]

Сложный теплообмен описывается системой уравнений, состоящей из уравнений энергии, движения и сплошности, к которым добавляются условия однозначности. Для модели сплошной среды уравнения сохранения массы и количества движения (см. гл. 4) остаются неизмен- ыми. Уравнение энергии применительно к радиационно-конвективному стационарному теплообмену в однокомпоНентной несжимаемой жидкости, поглощающей, испускающей и рассеивающей энергию излучения, будет иметь вид  [c.435]

При течении газа или жидкости с трением и теплообменом условие изоэнтропийности процесса колебаний нарушается. Однако при сравнительно высоких частотах вблизи поверхности канала образуется колеблющийся пограничный слой если толщина колеблющегося пограничного слоя 6 много меньше, чем экви валентный радиус канала (6, < г ), то в основном ядре потока колебания практическия вляются изоэнтропическими. В этом случае можно предположить, что условие (108) выполняется для каждого сечения канала, однако скорость звука в условиях теплообмена является величиной переменной по длине канала и зависит от характера изменения средней температуры или плотности. Таким образом, при наличии теплообмена в канале модель изоэнтропических колебаний может быть использована для расчета колебаний потока жидкости или газа при сравнительно высоких частотах влияние теплообмена в этом случае определяется характером изменения скорости звука по длине канала. При такой постановке задачи достаточно рассмотреть уравнение движения и непрерывности (107) и уравнение процесса малых колебаний (108).  [c.42]

Рассмотрим случай совместного движения системы ротор— корпус на примере следующей модели консольный вал с неотба-лансированным диском на конце, вращающийся внутри ynpyioio подвешенного кольца зазор между кольцом и диском заполнен жидкостью (рис. 1). Как на ротор, так и на корпус, кроме упругих и инерционных сил, будут действовать гидродинамические силы со стороны жидкости. Уравнения движения системы имеют вид  [c.36]

Теоретической предпосылкой для теплового моделированин является наличие соответствующего математического описания исследуемого явления в виде системы уравнений и условий однозначности, Согласно третьей теореме подобия М. В. Кирпичева, явление в модели будет подобно исходному явлению, если оба они подчиняются одинаковым по физическому содержанию и форме дифференциальным уравнениям и одинаковым яо физическому содержанию и форме записи уравиениям, определяющим условия однозначности. Применительно к процессам конвективного теплообмена это означает, что рассматриваемые явления протекают в геометрически подобных системах, имеют подобное распределеняе скорости и температуры во входных сечениях геометрических системах, подобное распределение полей физических параметров в потоке жидкости. Кроме того, одноименные, определяющие критерии подобия для явления-модель и явления-образец должны быть численно одинаковыми. Перечисленные условия подобия являются необходимыми и достаточными. Практически точно удается осуществить не все перечисленные требования при моделировании явлений. Геометрическое подобие модели и образца и подобное распределение скоростей во входном сечении может быть выполнено относительно просто. Подобное распределение температуры в жидкости при входе в модель выполняется также достаточно легко, если задается постоянное распределение температуры м скорости при входе в модель. Наоборот, осуществление подобного распределения температуры в жидкости у поверхности нагрева в модели и образце является весьма трудной задачей, хотя и возможно путем применения различных способов обогрева поверхности. Для расчета средств обогрева поверхности нагрева необходимо выбрать перепад между температурами поверхности нагрева и омывающей ее жидкостью в модели. При развитом турбулентном движении указанный температурный перепад непосредственно в критерий подобия не входит. Поэтому опыты можно производить и при таком значении температурного напора, которое обеспечивает необходимую точность его измерения.  [c.311]

В процессе производства и отделки природных и синтетических волокон на каждой стадии технологического процесса происходит обработка волокна химически активными жидкостями отбеливателями, растворами красителей и т.д. Для оптимизации данного процесса важно знать его математическое моделирование. Предложена топохимическая модель такого процесса с учетом химического взаимодействия и фазовых переходов активного компонента в твердую матрицу волокна в процессе движения активной жидкости в поровом пространстве. Данная модель описывается следующими уравнениями  [c.102]


Задачи течения в каналах. Этот класс задач объединяет все ламинарные и турбулентные, стационарные и нестационарные режимы течения однородных и многокомпонентных газов и жидкостей при свободном и вынужденном движении в каналах произвольной формы н произвольных граничных условиях на поверхностях капала. Широкий спектр прикладных задач данного класса регнается при условии, что градиент давления поперек потока отсутствует (dpjdr—0). В частности, математическая модель для задач теплообмена при неустаповившемся ламинарном симметричном вынужденном движении однородного газа в канале в цилиндрической системе координат задается системой дифференциальных уравнений (неразрывности, движения, энергии) [64]  [c.185]

Пусть имеется двумерное плоское движение жидкостей Максвелла (У2 = 0) и Олдройда (7,)<2 0) с реологическим уравнением состояния (1.6), в котором применяется оператор субстанциональной производной по времени (1.7), /и = О, / = О. Несовершенство этой модели в том, что для нее не выпо н1яется принцип материальной объективности (подробное обсуждение этого вопроса имеется в обзоре [88]). Вместе с тем вариант т О является предельным для моделей Максвелла и Олдройда и содержит все основные гиперболические черты общей модели, когда т О. Подробный сравнительный анализ этих операторов дифференцирования показал [89]. что существует диапазон гидродинамических параметров, где простая конвективная производная дает результаты, которые качественно и количественно близки к производной Олдройда. Этот вывод подтверждается и нашими расчетами, см. п. 1.5.2, рис. 1.21. Отметим также, что оператор конвективной производной успешно применяется при описании релаксационных свойств ту рбулентных сдвиговых течений в пограничном слое [15],  [c.40]

Симха [48] применил такую модель к расчету вязкости концентрированных суспензий. Ячейка в этом случае состоит из жесткой сферической оболочки, в центре которой содержится рассматриваемая сферическая частица. Возмущения течения, вызванные наличием других частиц вне ячейки, не могут влиять на дила-тационное движение внутри нее. Обозначая радиус ячейки через 6, предполагают, что действие всех других частиц суспензии, подверженной сдвигу, сводится к исчезновению возмущения скорости дилатационного движения на поверхности ячейки. Такая упрощенная модель учитывает прежде всего взаимодействие между центральной частицей и ее непосредственными соседями. Внутри кольцевого слоя а < г < 6 движение жидкости удовлетворяет уравнениям медленного течения. Гидродинамика этой упрощенной модели может быть получена в замкнутой форме. Здесь математические детали опускаются, так как их можно восстановить по реше-  [c.518]

Для достаточно широкого круга задач такие результаты были действительно иолу чены. Однако практика расчетов показала, что при решении сколько-нибудь сложных задач в случае каких-либо особенностей, например, зон пограничных слоев с большими градиентами параметров потока в задачах динамики вязкой среды, зон концентрации напряжений в прочностных задачах, зон кумуляции энергии в ряде задач физики взрьь ва, сложных локальных особенностей границ областей, лобовой способ решения дает малонадежные численные результаты, теряется точность вычислений. Кроме того, трехмерные расчеты, особенно в механике жидкости и газа при учете реальной геомет- зии аппаратов, с большим трудом осуществляются на современных ЭВМ, даже если в течениях не возникает каких-либо особенностей. Если же соответствующие потоки газа или жидкости турбулируются, то даже в рамках имеющихся математических моделей, в частности уравнений Навье-Стокса со специальной вязкостью, описывающих движения такого типа, расчет, например, трехмерного обтекания самолета турбулентным потоком газа с помощью имеющихся разностных методов, по оценкам известного аме-  [c.14]

Разложение в ряды Тейлора по времени нелинейных коэффициентов уравнения движения влаги. При рассмотрении одномерной задачи обсуждался вопрос о повышении точности модели. Одним из способов усовершенствования модели является отказ от квазистационарности коэффициентов уравнения для влаги и их явное интегрирование по времени. Неизвестную функцию рекомендуется раскладывать в ряд Тейлора, а для вычисления производных использовать известную информацию с предыдущих шагов по времени. Интеграл по времени от ряда Тейлора легко вычисляется, т.к. представляет собой сумму степеней. Прием также является приближенным, но по сравнению с квазистаци-онарным подходом он позволяет более чем в 3 раза увеличить шаг по времени с сохранением прежней точности. Этот вывод был сделан на основе исследования поведения численного решения одномерной задачи диффузии жидкости в грунте с простейшими граничными условиями. Отметим, что разложение в ряды коэффициентов теплопроводности не приводит к более точному результату, т.к. эти коэффициенты слабонелинейны, и квазистационарный подход вполне приемлем для решения уравнения движения тепла.  [c.153]

Статья начинается по существу с гл. 2. где выводятся уравнения движения. Мы старались дать строгое и полное исследование исходных предположений, основываясь на концепции движения как непрерывного точечного преобразования пространства в себя. В заключительной части этой главы рассматриваются вопросы, связанные с преобразованием координат и вариационными принципами механики жидкости. Содержание гл. 3 не выходит в основном за рамки общепринятых учебников, однако, выпустив ее, мы нарущили бы единство изложения. Кроме того, в этой главе мы впервые знакомимся со многими идеями, играющими важную роль в дальнейщем, при изучении более сложных вопросов. В гл. 4 мы вновь возвращаемся к исследованию исходных предположений и кратко излагаем термодинамику движения жидкости, включая систему постулатов соответствующих разделов классической термодинамики. Представления, развитые в этом разделе, могут служить моделью при изучении многокомпонентных гидродинамических систем.  [c.6]


Смотреть страницы где упоминается термин Модели жидкостей и уравнения движения : [c.141]    [c.575]    [c.219]    [c.557]    [c.412]    [c.75]    [c.145]    [c.311]   
Смотреть главы в:

Курс теоретической механики  -> Модели жидкостей и уравнения движения

Курс теоретической механики 1983  -> Модели жидкостей и уравнения движения



ПОИСК



283 — Уравнения жидкости

Модели жидкости

Модель движения

Модель идеальной жидкости. Уравнения движения Эйлера

Уравнения движения жидкости



© 2025 Mash-xxl.info Реклама на сайте