Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы трения внутренние

Ремень находится в контакте со шкивом не только боковыми поверхностями зубьев, но и прижимается внутренней поверхностью впадин к наружной поверхности шкива. Однако ввиду малого начального натяжения сила прижатия ремня к наружной поверхности шкива небольшая. По этой причине работа сил трения внутренних впадин ремня при расчете не учитывается.  [c.142]

Для уменьшения сил трения внутренние стенки кристаллизатора смазываются жидким маслом (лучше всего растительным) смазКа подается каплями сверху капли, попадая на мениск жидкого металла, быстро скатываются с него на стенку кристаллизатора.  [c.165]


При равномерном установившемся движении работа внешних сил (поверхностных и объемных), приложенных к какому-либо отсеку потока, всегда равна работе сил трения (внутренних и внешних). В результате работы сил трения механическая энергия жидкости переходит в тепло, причем жидкость нагревается тепло с течением времени рассеивается.  [c.106]

К внешним силам, например, относятся давление рабочей смеси (газа или жидкости) на поршень кривошипно-ползунного механизма двигателя внутреннего сгорания, парового двигателя, компрессора, вращающий момент, развиваемый электродвигателем на валу рабочего механизма, и др. Некоторые силы возникают в результате движения механизма. К этим силам, например, относятся силы трения при движении, силы сопротивления среды и т. д. Некоторые силы, как, например, динамические реакции в кинематических парах, возникают при движении вследствие инерции звеньев.  [c.204]

При работе механизма к его звеньям приложены внешние задаваемые силы, а именно силы движущие, силы производственных сопротивлений, силы тяжести и др. Кроме toi o, при движении механизмов в результате реакций связей в кинематических парах возникают силы трения, которые можно рассматривать как составляющие этих реакций. Реакции в кинематических парах, так же как и силы трения, по отношению ко всему механизму являются силами внутренними, но по отношению к каждому звену, входящему в кинематическую пару, оказываются силами внешними.  [c.206]

Например, у двигателя внутреннего сгорания движущей силой является давление расширяющегося газа на поршень. Силами сопротивления будут сила трения в подшипниках и цилиндрах, сопротивление воздуха, сопротивление той рабочей машины, которая приводится в движение двигателем, и т. п. При этом ео-противление рабочей машины, которая приводится двигателем в движение, будет производственным сопротивлением, а силы трения, сопротивление воздуха и т. д. будут непроизводственными сопротивлениями.  [c.207]

Определить закон изменения скоростей по радиусу, а также силу трения Т на длине I -= м внутреннего цилиндра и расход Q жидкости в канале.  [c.208]

По горизонтальной платформе А, движущейся при отсутствии трения, перемещается тело В с постоянной относительной скоростью о (см. рисунок к задаче 36.9). При затормаживании тела В между ним и платформой А возникают силы трения. Определить работу внутренних сил трения между телом В и платформой А от момента начала торможения до полной остановки тела В относительно платформы А, если их массы соответственно равны т н М.  [c.297]


Выведенные выше формулы скорости истечения и секундного расхода газа справедливы только для обратимого процесса истечения, так как не учитывают силы трения рабочего тела о стенки канала и внутреннее тренне между струйками потока из-за различия скоростей по сечению канала.  [c.212]

Величины X, с, а и р уже рассматривались в предыдущих параграфах. В исследованиях конвективного теплообмена большое значение имеет также вязкость. Все реальные жидкости обладают вязкостью между частицами или слоями, движущимися с различными скоростями, всегда возникает сила внутреннего трения (касательное усилие), ускоряющая движение более медленного слоя и тормозящая движение более быстрого. Величина силы трения 5 между слоями, отнесенная к единице поверхности, согласно закону  [c.403]

Силы трения T на наружной поверхности охватывающего кольца и внутренней поверхности охватываемого (рис. 331, а)  [c.306]

Сцепные управляемые муфты передают крутящий момент от ведущего вала к ведомому через зацепления полумуфт, имеющих на внутренних торцах выступы (кулачки) или зубья (кулачковые и зубчатые муфты), или силами трения, возникающими на рабочих поверхностях полумуфт (фрикционные муфты). Общим требованием для всех типов сцепных муфт является строгая соосность соединяемых валов. По сравнению с кулачковыми и зубчатыми фрикционные муфты обладают рядом преимуществ плавная передача движения  [c.456]

Внешние поверхностные силы — силы трения о стенки внутренние — силы вязкостного турбулентного взаимодействия.  [c.204]

Соединения передают моменты и осевые нагрузки силами трения на поверхностях контакта вала и ступицы с пружинными кольцами (рис. 7.33). При затягивании гайки пружинные кольца надвигаются одно на другое. При этом наружные кольца растягиваются и плотно прижимаются к ступице, а внутренние кольца сжимаются и плотно прижимаются к валу.  [c.122]

Решение. Чтобы исключить из рассмотрения неизвестные нам силы трения подошв о дио лодки и мускульные усилия людей, будем рассматривать лодку и людей как одну систему (при этом названные силы станут внутренними). Внешними силами, действующими на систему, будут вертикальные си  [c.278]

Работа внутренних сил (вращающего момента и сил трения в осях), если учесть, что ds =ds=rdугол поворота колеса, будет  [c.333]

Искомое натяжение нити является в рассматриваемой системе силой внутренней. Для ее определения расчленяем систему и применяем принцип Даламбера к одному из грузов, например jнормальная реакция iVj, сила трения f, и натяжение нити Т. Присоединяя к ним силу инерции Р г и составляя уравнение равновесия в проекции на горизонтальную ось, находим  [c.349]

Природа сил сопротивления бывает различной. Это может быть сопротивление среды (воздух, вода), сопротивление масляного слоя в подшипниках, внутреннее трение в частицах металла и пр. Сила трения довольно сложно и зачастую неопределенно зависит от  [c.465]

В случае воздушной турбинки мы называем их силами трения, назначение которых состоит в том, чтобы переводить часть внутренней энергии не в работу, а в тепло.  [c.111]

К ведомому колесу, не связанному с двигателем, приложена сила давления на ось Р, параллельная пути (рис. 103, б). В точке касания с рельсом к колесу приложена сила сцепления / ,,ц, препятствующая скольжению колеса под действием силы Р. При тор-г южении модуль силы сцепления направленной противоположно движению, возрастает, и под действием этой силы поезд (автомобиль) получает замедление. Силы взаимодействия между тормозными колодками и колесами являются внутренними и не могут произнести торможение поезда (автомобиля), но эти силы вызывают увеличение модуля внешней силы Если колеса начинают скользить, то сила сцепления превращается в силу трения скольжения. При равномерном движении поезда все действующие на него внешние силы уравновешиваются.  [c.121]


Решение. Частица М (х, у, г) движется под действием трех сил веса Р, направленного по вертикали миз, нормальной реакции /V цилиндра, направленной по внутренней нормали к его поверхности, и силы трения frp, направленной противоположно вектору скорости V. Найдем проекции этих сил на каждую из трех координатных осей  [c.264]

Используя уравнение (1.207) при решении задач, необходимо иметь в виду следующее. Движение центра масс характеризует движение всей системы только при ее поступательном движении. В частном случае если Fe =0, то и ас=0. Значит, система движется равномерно и прямолинейно либо находится в состоянии покоя. Внутренние силы никак не влияют на движение центра масс. Например, для автомобиля движущей является внешняя сила трения, приложенная к его ведущим колесам.  [c.144]

Для уменьшения габаритов муфты, повышения плавности включения и уменьшения силы нажатия Р применяют муфту не с одной, а с многими парами поверхностей трения — многодисковую муфту (рис. 3.182), которая получила преимущественное распространение в машиностроении. Она состоит из двух неподвижных полумуфт 1 и 9, наружных 3 и внутренних 4 дисков, упорных колец 2 и 5, регулировочных гаек 6, рычажного привода управления 8 и отводки 7. Наружные диски 3 соединяются с полумуфтой 1, а внутренние 4 — с полумуфтой 9 с помощью подвижного шлицевого соединения. При включении муфты все диски зажимаются между упорными кольцами силой нажатия Р от привода управления. Эта сила передается на все поверхности трения. Между дисками возникают силы трения. Происходит сцепление полумуфт и соединение муфтой валов. В выключенной (разомкнутой) муфте. между дисками образуются зазоры 0,2.. . 1 мм. В процессе включения и выключения муфты происходит проскальзывание дисков, а следовательно, износ их поверхностей трения. При этом увеличиваются зазоры между дисками, что приводит к резкому снижению силы нажатия Р и сил трения. Поэтому муфту периодически регулируют гайками б, т. е. устанавливают требуемое расстояние между упорными кольцами. Управление муф-  [c.437]

Изображаем внешние силы, приложенные к автомашине (см. рисунок) Я1 и 4Р5 — силы тяжести, 2Я1 и 2Яа — нормальные силы реакций, смещенные относительно центров тяжести колес в сторону движения на величину коэффициента трения качения / , 2Я/р и 2Р р— силы трения колес о шоссе, направленные в сторону, противоположную движению (после выключения мотора все колеса автомашины оказываются ведомыми). Внутренние силы не изображаем, считая автомашину неизменяемой системой и пренебрегая силами внутреннего трения. Следовательно, сумма работ всех внутренних сил системы равна нулю. Теперь уравнение (1) принимает вид  [c.311]

Задача 210 (рис. 170). Для торможения вращающегося барабана применяется тормоз с внутренними колодками. При указанном направлении вращения барабана определить силы трения колодок  [c.78]

В качестве примера рассмотрим расчет характеристики регулятора радиального действия (рис. 31.8), применяемого в электрических счетных машинах и других устройствах. На валике 4 электродвигателя закреплен диск 2 с двумя грузиками 3, которые могут поворачиваться вокруг осей О. При уменьшении нагрузки частота вращения двигателя увеличивается и центробежная сила Рц возрастает. Преодолевая силу сопротивления пружин 5, грузики 3 с силой N прижимаются к внутренней цилиндрической поверхности стакана /, закрепленного на корпусе двигателя. При этом возникают силы трения Pf = /24, создающие тормозной момент регулятора Гр = 2Р 4 .  [c.396]

Фрикционные конические колеса обычно представляют собой прямые усеченные конусы 1 п 2 (рис. 7.4) они являются аксои-дами в относительном движении звеньев / и 2, оси вращения Л и В которых пересекаются в точке О. Касание колес происходит по общей образующей. С помощью сил трения, возникающих в точке касания, можно воспроизвести вращение этих колес вокруг осей Л и В с угловыми скоростями Oi и (Oj. Механизм конических фрикционных колес, показанный на рис. 7.4, а, носит название механизма круглых конических фрикционных колес с внешним касанием. На рис. 7.4, б показан механизм круглых конических фрикционных колес с внутренним касанием.  [c.142]

При этом следствием появления Фтх является, как отмечалось выше, увеличение общих сил трения на границах потока, что в продуваемых системах (например, газовзвеси) проявляется в дополнительной потере давления (Арт), а в гравитационных (непродуваемых) системах— в возникновении поперечного градиента скорости слоя. Статические давления компонентов потока р и рт в общем случае нельзя принимать равными. Они отличаются не только на капиллярное давление при большой дисперсности частиц [Л. 279], но и имеют разное приложение в случае связанного движения плотного слоя частиц gradpT также учитывает внутреннее напряжение в материале частицы, которое может возникнуть из-за механических или термических причин. Проекция равнодействующей сил инерции компонентов на ось х равна изменению количества движения элемента Ах Ау Az зо времени по оси х  [c.38]

Удельные усилия на контактных поверхностях при вытяжке с утонением стенки значительно больше, чем при вытнжке без утонения стенкн. Так как при вытяжке с утонением стенки заготовка скользит по матрице в направлении движения пуансона и по пуансону в обратном напрааленпи (от торца пуансона), то и силы трения на наружной и внутренней поверхностях заготовки направлены в противоположные стороны. Это обстоятельство увеличивает допустимую степень деформации (силы трения но матрице увеличивают растягивающие напрялчения в стенках протянутой части заготовки, а по пуансону — уменьшают).  [c.109]


Кроме того, все приложенные к механизму силы и момеЕ1ты де лятся на внешние и внутренние. К внешним относятся движущие силы и моменты движуншх сил, силы и моменты сил сопротивления, силы тяжести, силы инерции. Внутренними являются силы взаимо действия между звеньями, образующими кинематические пары, в том числе и силы трения.  [c.115]

Соединения передают моменты и осевые силы за счет использования сил трения на поверхностях контакта вала и ступицы с пружинными кольцами (рис. 6.6). Кольца изготовляют из пружинной стали (55ГС, 60С2А и др.). При затягивании гайки на валу (рис. 6.6, а) или винта в ступице (рис. 6.6, 6) пружинные кольца надвигают одно на другое. Наружные кольца при этом растягивают и плотно прижимают к ступице, а внутренние кольца сжимают и плотно прижимают к валу.  [c.84]

Коэффициент трения на опорной поверхности гайки = 0,18 коэффициент трения в резьбе / = 0,15. При определении момента сил трения на опорной полерхностп гайк71 рассматривать ее как кольцо с внутренним диаметром, равным диаметру отверстия под болт (4 = и мм для болта Ml О и = 31 мм для болта МЗО), и наружным, равным размеру гайки под ключ . Допустимы ли полученные напряжения, если материал болтов — сталь Ст.З  [c.66]

В технологических процессах интерес представляет случай дисперсной смеси с частицами из ферромагнитного материала в магнитном поле, которое оказывает непосредственное моментное воздействие лишь на частицы (2-я фаза). Это приводит к их ориентированному мелкомасштабному враш,ению (Mj =5 0) с угловой скоростью 2, кинематически независимой от поля их осреднен-ных скоростей v . Вращение частиц за счет сил трения передается и несущ,ей фазе и приводит к мелкомасштабному с характерным линейным размером, равным размеру частиц, ориентированному вращению несущей жидкости М =7 0), Если магнитное поле не оказывает непосредственного воздействия на несущую фазу, т. е. она остается неполярной, то тензор напряжения в ней будет симметричным, а во второй фазе— несимметричным, причем его несимметрическая часть определяется воздействием внешнего магнитного поля на частицы. Симметричность тензора напряжений несущей фазы вытекает из симметричности тензора микронапряжений o l и совпадения среднеповерхностпых и среднеобъемных величин, что в свою очередь вытекает из регулярности этих величин. Несмотря на эти допущения, уравнения импульса и внутреннего момента несущей фазы могут быть приведены к некоторому виду, где, как и для дисперсной фазы, фигурирует несимметричный тензор поверхностных сил aji (см. 1,6 гл. 3).  [c.83]

Торможение. Для торможения к барабану, жестко связанному с катящимся колесом, прижимают тормозную колодку. Возникающая при этом сила трения колодки о барабан будет силой внутренней и сама по себе не изменит движение центра масс, т. е. не затормозит поезд или автомобиль. Однако трение колодки о ( арабан будет замедлять вращение колеса вокруг его оси и увеличит силу трения колеса о рельс (или грунт), направленную нро-тивоноложно движению. Эта внешняя сила и будет замедлять движение центра масс поезда или автомобиля, т. е. создавать торможение (см. задачу 154 в 130).  [c.277]

Состави.м дифференциальные уравнения, описывающие движение механической системы (рис. 197, а). К колесу В приложены вращающий момент М, сила тяжести G = mgg, нормальная реакция в опорной точке К и сила сцепления Есп, предположительно направленная вправо. На тело А действуют сила тяжести Q = т , приложенная в центре тяжести С, реакция Yp, сила трения Xo=fYo и реактивный момент корпуса двигателя М. Силы взаимодействия в точке О. между телом А и колесом В являются реакциями внутренних идеальных связей и не показаны на рисунке. При расчленении системы на части (рис. 197, б, в) в точках О прикладываются силы взаимодействия Хо = Х о и Yq = Y q между телами Л и В.  [c.271]

Решение. Часто ошибочно полагают, что центр инерции автомашины непосредственно приводится в движение силой давления газов в цилиндрах двигателя. Эта сила, являясь внутренней, на движение центра инерции автомашины прямо не влияет. Под действием этой силы возникают вращающие моменты пар сил, приложенных к ведущим колесам. В результате появляются силы трения между покрышками ведущих колес автомашины и землей, направленные по гофизонтали в сторону движения автомашины (силами трения между покрышками ведомых колес и землей пренебрегаем).  [c.148]


Смотреть страницы где упоминается термин Силы трения внутренние : [c.68]    [c.516]    [c.233]    [c.288]    [c.189]    [c.43]    [c.123]    [c.458]    [c.158]    [c.189]    [c.277]    [c.277]    [c.461]    [c.369]    [c.301]   
Гидравлика (1982) -- [ c.132 , c.135 ]



ПОИСК



Движение вязкой жидкости. (Силы внутреннего трения. Распределение скорости по сечению трубы. Формула Пуазейля. Число Рейнольдса

Сила внутреннего трения (вязкости)

Сила внутренняя

Сила вязкости (сила внутреннего трения)

Сила трения

Силы внутреннего трения. Коэффициент вязкости

Силы трения внешние внутренние

Трение внутреннее

Трение сила трения



© 2025 Mash-xxl.info Реклама на сайте