Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения движения и решение задач динамики точки

При интегрировании дифференциальных уравнений движения в конкретных задачах эти уравнения подвергаются различным однотипным преобразованиям, зависящим от характера действующих сил. Поэтому целесообразно проделать такие преобразования в общем виде. Общие теоремы динамики точки и представляют собой преобразования дифференциальных уравнений движения, причем в различных теоремах выделены и связаны между собой те илн иные характеристики движений. В результате получаются удобные аа-висимости, широко используемые для решения конкретных задач динамики.  [c.289]


Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ СВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ ДВУХ ОСНОВНЫХ ЗАДАЧ ДИНАМИКИ ТОЧКИ  [c.448]

С помощью дифференциальных уравнений движения свободной материальной точки (7.2) —(7.4), несвободной точки (7.8) и (7.10) и дифференциальных уравнений относительного движения (7.17) можно решить две основные задачи динамики точки (следует отметить что эти же две задачи ставятся при решении задач динамики механической системы).  [c.110]

Введение. Приступая к принципу Даламбера, мы покидаем область статики и попадаем в область динамики. Здесь задачи гораздо более сложны и их решение требует более совершенных методов. В то время как задачи статики для систем с конечным числом степеней свободы приводят к алгебраическим уравнениям, которые могут быть решены при помощи исключения переменных и подстановок, задачи динамики приводят к дифференциальным уравнениям. Настоящая книга посвящена главным образом формулировке и интерпретации основных дифференциальных уравнений движения, а не их окончательному интегрированию. Принцип Даламбера, который мы обсудим в настоящей главе, непосредственно ничего не дает для целей интегрирования. Однако он является важной вехой в истории теоретической механики, так как он дает интерпретацию силе инерции, а это существенно для дальнейшего развития вариационных методов.  [c.112]


Исходя из своего общего уравнения динамики, Лагранж вывел дифференциальные уравнения движения в двух видах, соответствующих двум видам уравнений статики. Это знаменитые уравнения движения Лагранжа первого и второго рода. Уравнения движения второго рода замечательны тем, что для систем, при движении которых не изменяется их полная механическая энергия (консервативные системы), эти уравнения можно составить, зная общее выражение только двух величин кинетической энергии системы и ее потенциальной энергии. Число этих уравнений минимально, оно равно числу степеней свободы системы. Вместе с тем уравнения Лагранжа весьма общи их можно использовать для разных физических систем, если состояние таких систем характеризуется значениями их кинетической и потенциальной энергии. Кроме того, уравнения движения в форме Лагранжа второго рода имеют определенную структуру с математической точки зрения. Поэтому задача их решения (интегрирования) в общем виде является достаточно определенной, чтобы исследовать ее чисто математически. Знаменитый физик Максвелл имел все основания писать в своем Трактате об электричестве и магнетизме , касаясь значения Аналитической механики Лагранжа  [c.204]

Класс точных решений уравнений газовой динамики удалось получить, применяя методы теории размерностей и подобия. Основная заслуга в этом принадлежит Л. И. Седову. В 1944 г. он дал общий прием для нахождения решений линейных и нелинейных дифференциальных уравнений в частных производных. Для одномерных неустановившихся течений (которые описы- 331 ваются нелинейными уравнениями) он рассмотрел случаи, когда искомые функции содержат постоянные, среди которых одна или две постоянные с независимыми размерностями. Седов доказал, что если среди размерных параметров, определяющих движение совершенного газа, кроме координаты г и времени t имеются лишь два постоянных физических параметра с независимыми размерностями, то уравнения в частных производных могут быть сведены к обыкновенным дифференциальным уравнениям. Движения газа, определяемые этими условиями, были названы автомодельными. Такими решениями были течения Прандтля — Майера, сверхзвуковые течения около кругового конуса с присоединенным скачком. В 1945 г. Седов нашел точные решения уравнений одномерного неустановившегося движения в случае плоских, цилиндрических и сферических волн (движение поршня в цилиндрической трубе, задача детонации, движение газа от центра и к центру) .  [c.331]

Методика изучения курса учитывает разницу в распределении учебных часов между лекциями и упражнениями. В связи с этим некоторые темы курса на упражнениях не рассматриваются, а целиком изучаются на лекциях с подробным решением необходимых задач. Например, в разделе Статика не выносится для изучения на занятиях тема Определение положения центра тяжести твердого тела в разделе Кинематика — темы Сферическое движение твердого тела , Сложное движение твердого тела в разделе Динамика — темы Колебательное движение материальной точки , Определение динамических реакций подшипников при вращении твердого тела относительно неподвижной оси , Составление дифференциальных уравнений движения системы материальных точек с помощью уравнений Лагранжа второго рода .  [c.12]

Читателю, познакомившемуся с дифференциальными уравнениями движения свободной материальной точки, иногда начинает казаться, что вся динамика сводится к интегрированию дифференциальных уравнений движения в действительности же самым трудным и принципиально не всегда выполнимым является первый этап — исключение неизвестных реакций если его удалось выполнить, то мы считаем задачу динамики в принципе решенной, ибо теми или иными методами мы всегда можем проинтегрировать любую систему дифференциальных уравнений и получить решение с любой степенью точности.  [c.68]


Трудности, с которыми мы встречаемся при решении общей задачи динамики несвободной материальной системы, являются не математическими, а принципиальными если не наложить каких-то ограничений на связи системы, то, как показано на примере в 2, гл. III, число неизвестных функций может быть больше числа уравнений и задача будет неразрешимой. Но даже в том случае, когда мы имеем необходимое число уравнений, мы все же не имеем общего метода, позволяющего исключить все реакции связей, а без этого нельзя интегрировать дифференциальные уравнения движения.  [c.309]

Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Решение второй задачи динамики. Начальные условия. Постоянные интегрирования и их определение по начальным условиям. Примеры интегрирования дифференциальных уравнений движения точки в случаях силы, зависящей от времени, от положения (координат) точки и от ее скорости.  [c.8]

Изложенный в предыдущей главе прием решения задач динамики в особенности удобно применяется в тех случаях, когда движение материальной точки задано и требуется определить силу или силы, под действием которых это движение происходит. К этой категории вопросов относились примеры, изложенные в предыдущем параграфе. Не менее важна обратная задача зная силы, действующие на материальную точку, определить ее движение. Общий прием для решения этой задачи состоит в интегрировании дифференциальных уравнений движения материальной точки.  [c.25]

Если движение неинерциальной системы в некоторой инерциальной известно, то дифференциальные уравнения движения материальной точки в ней (8.6) составить легко. Обе силы инерции определяются по формулам (8.4) и (8.5). На практике отнесение движения к неинерциальной системе в ряде случаев позволяет значительно упростить решение второй задачи динамики.  [c.101]

Полное решение основной задачи динамики для системы будет состоять в том, чтобы, зная заданные силы и наложенные связи, проинтегрировать соответствующие дифференциальные уравнения и определить в результате закон движения каждой из точек системы и реакции связей. Сделать это аналитически удается лишь в отдельных случаях, когда число точек системы невелико, или же интегрируя уравнения численно с помощью ЭВМ.  [c.273]

Основная задача динамики относительного движения точки, рассматриваемая в этой главе, состоит в следующем пусть система отсчета Охуг имеет известное нам движение относительно системы отсчета т. е. для любого момента времени нам известно абсолютное ускорение точки О, а также переносная угловая скорость и переносное угловое ускорение системы отсчета Охуг относительно системы отсчета О х у г . Зная силы, действующие на точку М, а также начальные условия движения как в отношении точки М, так и в отношении системы отсчета Охуг, требуется найти закон относительного движения точки М. Для решения этой задачи нужно сначала составить дифференциальные уравнения относительного движения точки М, а затем, проинтегрировав эти уравнения, найти искомый закон относительного движения этой точки М.  [c.500]

Данное уравнение называют уравнением движения вершины трещины по той простой причине, что оно является обыкновенным дифференциальным уравнением по времени для координаты вершины трещины a(t) и напоминает по виду уравнение движения материальной точки в элементарной динамике. Уравнение (3.1) допускает точное решение лишь в некоторых простейших случаях некоторые следствия из этого уравнения будут рассмотрены в следующем параграфе. В данном параграфе акцент сделан на проблеме динамической вязкости разрушения. Особое внимание уделяется, в частности, предсказанию зависимости динамической вязкости разрушения от скорости движения вершины трещины путем исследования напряженно-деформированного состояния на расстояниях, намного меньших тех характерных размеров, на которых преобладающую роль играют поля, определяемые коэффициентом интенсивности напряжений. Не говоря уже о том, что решение данного вопроса интересно само по себе, оно очень важно и для исследования задач об остановке трещины и выявления связи микроструктуры материала с сопротивлением динамическому росту трещины.  [c.98]


Обратимся теперь к задаче динамики и выясним, как изменятся обстоятельства изгиба рельса, если принять в расчет конечную скорость движения колеса по рельсу. Для приближенного решения этого вопроса воспользуемся обычными упрош,ениями будем считать рельс невесомым и давление, передаваемое колесному скату через рессоры, постоянным. В таком случае при определении динамического прогиба придется принять в расчет лишь силы инерции, соответствуюш,ие вертикальным перемеш,ениям колесного ската. Если через q обозначим вес колеса и неизменно с ним связанных частей и через Q — статическое давление колеса на рельс,то прогиб f под колесом должен удовлетворять дифференциальному уравнению  [c.375]

Под влиянием каждого отдельного столкновения происходит очень малое отклонение частицы от ее макроскопической траектории. Если мы не хотим входить в детали динамики системы многих частиц, то единственное утверждение, которое можно высказать относительно столкновений, заключается в том, что они весьма многочисленны и чрезвычайно нерегулярны как по своей силе, так и по направлению. Вопреки первому впечатлению, это утверждение ни в коем случае не является ни негативным, ни обескураживающим. Напротив, если мы готовы отказаться от детерминизма в описании прогресса, то это утверждение дает нам необходимую основу для применения закона больших чисел и теории вероятности. Мы не можем считать силу А (t) заданной функцией времени однако можем сделать разумные предположения о влиянии столкновений, усредненном по большому числу макроскопически одинаковых ситуаций (т. е. по ансамблю). Аналогично мы не можем предсказать скорость или положение броуновской частицы в каждый момент времени t, но можем предсказать средний результат большого числа экспериментов, выполненных в одинаковых условиях. Следовательно, весь подход к решению уравнения (11.2.2) отличается от традиционной детерминированной начальной задачи для дифференциального уравнения. Уравнение (11.2.2) является типичным (и знаменитым) представителем класса так называемых стохастических (или случайных) уравнений движения. По имени  [c.11]

Полное решение основной задачи динамики для системы состояло бы в том, чтобы, зная заданные силы, проинтегрировать соответствующие дифференциальные уравнения и определить таким путем закон движения каждой из точек системы в отдельности.  [c.343]

Цель работы состоит в изучении основных явлений, демонстрирующих общие законы динамики системы точек и физический смысл интегралов движения. В общем случае задача нелинейна, и получить ее аналитическое решение не удается. В то же время проведение серии машинных экспериментов позволяет составить достаточно полное и наглядное представление об особенностях движения изучаемой механической системы. Специфика постановки машинного эксперимента проявляется, во-пер-вых, в необходимости предварительной оценки характерного времени протекания процессов для правильной организации вывода результатов решения задачи. Эта оценка определяется заданием конкретных значений параметров системы и начальных условий и проводится студентом предварительно перед каждым вводом исходных данных. Во-вторых, некорректное задание параметров или начальных условий может приводить к аварийным прерываниям решения, не связанным с существом задачи и определяемым ее конкретной реализацией на машине. Студенты убеждаются также, что точность решения зависит как от выбора алгоритма, так и от исходных данных. Нетрудно проследить, например, как изменяют свое численное значение интегралы движения, если выбран сравнительно крупный шаг интегрирования дифференциальных уравнений.  [c.52]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]

Наиболее общим приемом составления дифференциальных уравнений движения материальной системы, подчиненной голономным связям, является применение уравнений Лагранжа. При наличии идеальных связей в эти уравнения не входят реакции связей. Если на материальную систему наложены голономные связи, то число уравнений Лагранжа равно числу степеней свободы. Применение этих уравнений особенно целесообразно при рассмотрении систем с несколькими степенями свободы. Так, в случае системы с двумя степенями свободы надо составить два дифференциальных уравнения движения. Если решать задачу, минуя уравнения Лагранжа, то необходимо из многих общих теорем и иных уравнений динамики найти два уравнения, применение которых наиболее целесообразно. Удачно выбрать уравнения и общие теоремы можно лишь на основе значительных навыков в решении задач или путем ряда неудачных проб и ошибок. Вместе с тем применение уравнений Лагранжа дает возможность быстро и безошибочно получить необходимые дифференциальные уравнения движения. Вообще говоря, при отсутствии ясного плана решения зад7чи лучше всего использовать уравнения Лагранжа. При этом существенную роль играет удачный выбор обобщенных координат.  [c.549]

Как уже известно, основной закон динамики для несвободной материальной ючки, а следовательно, и ее дифференциальные уравнения движения имеюг такой же вид, как и для свободной ючки, только к действующим на точку силам добавляю все силы реакций связей. Естественно, что в эгом случае движения точки могут возникнуть соответствующие особенности нри решениях первой и второй основных задач динамики, чак как силы реакций связей заранее не известны и их необходимо донолнигельно определить по заданным связям, наложе1П1ым на движущуюся материальную точку.  [c.256]


Вместо искусственного сочетания некоторых общих теорем и уравнений динамики, выбор которых представляет значительные трудности, указанные методы быстро и естественно приводят к составлению дифференциальных уравнений движения. Удачный выбор обобщенных координат обеспечивает простоту и изящество решения задачи. Удобно и то, что составленные дифференциальные уравнения движения не входят силы реакций идеальных св5Гзей, определение которых обычно связано с большими трудностями (силы реакций связей при движении системы являются функциями от времени, положения, скоростей и ускорений точек системы).  [c.544]

Далеко не всегда действующие силы бывают известны. Обычно остаются неизвестными внутренние силы системы, приложенные к ее точкам, т. е. силы взаимодействия между точками этой системы (см. с. 167). Для вывода некоторых общих теорем динамики и при решении некоторых частных задач бывает удобным выделить внутренние силы уже при написании дифференциальных уравнений движения. Внешние силы обозначают F (от латинского слова exterior — внешний), а внутренние F (от латинского interior — внутренний).  [c.189]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

Для исследования оптимальных движений механических систем со свободными (или управляющими, регулируемыми) функциями имеются мощные математические методы, составляющие в наши дни основу вариационного исчисления или, более широко, функционального анализа. Создание реальной конструкции (ракеты, самолета, автопилота) тесно связано с изучением экстремальных свойств функций многих переменных и функционалов. Мудрый Леонард Эйлер писал в одной из своих работ ...так как все явления природы следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, если на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума . Анализ содержания научных статей по динамике полета, опубликованных за последние 20—25 лет, убеждает нас в том, что методы вариационного исчисления не только позволяют выделять из бесконечного разнообразия возможных движений, определяемых дифференциальными уравнениями механики, более узкие классы движений, для которых некоторые (обычно интегральные) характеристики будут оптимальными в ряде случаев они дают возможность детального аналитического исследования, так как для некоторых экстремальных режимов уравнения движения интегрируются в конечном виде. Опорные аналитические решения для оптимальных движений можно находить во многих трудных задачах, когда системы исходных уравнений являются нелинейными. Как эмпирический факт можно отметить, что для классов оптимальных движений нелинейные дифференциальные уравнения становятся более податливыми и в большом числе задач Зо-пускают интеграцию в квадратурах. Мы уверены в том, что семейства аналитических решений нелинейных уравнений механики в конечном виде внутренне тесно связаны с условиями оптимальности и в задачах динамики ракет и самолетов играют роль невозмущенных движений, аналогичных кеплеровым движениям в задачах небесной механики .  [c.35]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Эти к уравнений представляют собой дифференциальные уравнения движения механической системы в обобщенных координатах, они впервые были получены Лагранжем в его Аналитической механике и потому называются уравнениями Лагранжа. Важно обратить внимание на то, что, во-первых, число уравнений Лагранжа равно числу независимых обобщенных координат данной системы, т. е. равно числу ее степеней свободы, и, во-вторых, что неизвестные реакции совершенных связей, наложенных на систему, в эти уравнения не входят. Уравнения Лагранжа представляют собой систему к дифференциальных уравнений второго порядка с к неизвестными функциями д ,. .., Если проинтегрируем эти уравнения, то найдем координаты механической системы 911 > 9йКак функции времени I, а потому будем знать положение этой системы в любой момент времени, и, следовательно, движение системы будет полностью определено. Таким образом, когда уравнения Лагранжа для данной механической системы составлены, то решение второй основной задачи динамики, т. е. определение движения системы под действием заданных сил, сводится к математической задаче интегрирования этих уравнений.  [c.555]

Решение первой и второй задач динамики. Дифференциальные уравпеиия движений свободной и несвободной материальной точки в декартовых координатах. Естественные уравнения движения точки (уравнения в проекциях на оси естественного трехгранника).  [c.8]

Блестящих результатов в самых различных отделах механики достиг гениальный ученый Николай Егорович Жуковский (1847—1921), основоположник авиационных наук экспериментальной аэродинамики, динамики самолета (устойчивость и управляемость), расчета самолета на прочность и т. д. Его работы обогатили теоретическую механику и очень многие разделы техники. Движение маятника теория волчка экспериментальное определение моментов инерции вычисление пла нетных орбит, теория кометных хвостов теория подпочвенных вод теория дифференциальных уравнений истечение жидкостей сколь жение ремня на шкивах качание морских судов на волнах океана движение полюсов Земли упругая ось турбины Лаваля ветряные мельницы механизм плоских рассевов, применяемых в мукомольном деле движение твердого тела, имеющего полости, наполненные жидкостью гидравлический таран трение между шипом и подшипником прочность велосипедного колеса колебания паровоза на рессорах строительная механика динамика автомобиля — все интересовало профессора Жуковского и находило блестящее разрешение в его работах. Колоссальная научная эрудиция, совершенство и виртуозность во владении математическими методами, умение пренебречь несущественным и выделить главное, исключительная быстрота в ре-щении конкретных задач и необычайная отзывчивость к людям, к их интересам — все это сделало Николая Егоровича тем центром, вокруг которого в течение 50 лет группировались русские инженеры. Разрешая различные теоретические вопросы механики, Жуковский являлся в то же время непревзойденным в деле применения теоретической механики к решению самых различных инженерных проблем.  [c.16]


Этот ответ можно было получить и в примере 13.7, но там проводилог.ь интегрирование дифференциального уравнения прямолинейного движения точки. Целью этого примера было показать, что применение общих теорем динамики позволяет в ряде случае избежать интегрирования уравнений движения точки (13.7). Речь идет о тех случаях, когда общие теоремы динамики доставляют нам первые интегралы уравнений движения точки, достаточные для решения задачи. Мы обращаем внимание читателя на это заключепне.  [c.291]


Смотреть страницы где упоминается термин Дифференциальные уравнения движения и решение задач динамики точки : [c.2]    [c.255]    [c.473]    [c.539]    [c.27]    [c.50]    [c.29]    [c.225]    [c.138]    [c.69]    [c.703]    [c.5]    [c.121]    [c.226]   
Смотреть главы в:

Основной курс теоретической механики. Ч.1  -> Дифференциальные уравнения движения и решение задач динамики точки



ПОИСК



70 - Уравнение динамики

ДИНАМИКА Динамика точки

Движение дифференциальное

Динамика ее задачи

Динамика точки

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные уравнения движения материальной точки Мб Решение первой задачи динамики (определение сил по эаданнояу движению)

Дифференциальные уравнения движения несвободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения свободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения точки. Решение задач динамики точки

Дифференциальные уравнения движения точки. Решение задач динамики точки

Дифференциальные уравнения точки

Задача п тел уравнения движения

Задачи динамики

Некоторые простейшие применения дифференциальных уравнений движения материальной точки. Методические указания к решению задач динамики

Применение дифференциальных уравнений движения свободной материальной точки к решению второй задачи динамики точки

Применение дифференциальных уравнений движения свободной материальной точки к решению первой задачи динамики точки

Решение дифференциального уравнения

Решение задач динамики

Решения уравнения движения

Точка — Движение

Уравнение точки

Уравнения движения точки

Уравнения движения точки дифференциальные



© 2025 Mash-xxl.info Реклама на сайте