Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика относительного движения точки

Основное уравнение динамики относительного движения точки (26.6) в случае, когда переносное движение —равномерное вращение—имеет вид  [c.82]

Ниже в динамике относительного движения точки показано, что сформулированная аксиома применима не только к абсолютно неподвижной системе отсчета, но и к любой другой инерциальной системе отсчета, т. е. к системе движущейся поступательно, прямолинейно и равномерно по отношению к основной системе отсчета.  [c.205]


Следует различать тяжесть и агс час-ицы. Об этом более подробно сказано в динамике относительного движения точки.  [c.16]

Уравнения динамики относительного движения точки  [c.421]

Основная задача динамики относительного движения точки, рассматриваемая в этой главе, состоит в следующем пусть система отсчета Охуг имеет известное нам движение относительно системы отсчета т. е. для любого момента времени нам известно абсолютное ускорение точки О, а также переносная угловая скорость и переносное угловое ускорение системы отсчета Охуг относительно системы отсчета О х у г . Зная силы, действующие на точку М, а также начальные условия движения как в отношении точки М, так и в отношении системы отсчета Охуг, требуется найти закон относительного движения точки М. Для решения этой задачи нужно сначала составить дифференциальные уравнения относительного движения точки М, а затем, проинтегрировав эти уравнения, найти искомый закон относительного движения этой точки М.  [c.500]

Сравнив уравнение (6) с уравнением (1), мы приходим к следующему выводу основное уравнение динамики относительного движения точки (6) можно составить так же, как и основное уравнение динамики абсолютного движения точки (I), если только к действующим на точку силам (Р я М) присовокупить переносную и кориолисову силы инерции (Ф и Ф .  [c.502]

При решении первой задачи динамики относительного движения точки необходимо задать как относительное, так п переносное движение.  [c.111]

Изложению теоремы об изменении кинетического момента материальной системы в относительном движении предшествует изложение динамики относительного движения точки.  [c.71]

Динамика относительного движения точки  [c.166]

ГЛАВА V. ДИНАМИКА ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.75]

Установим основное уравнение динамики относительного движения материальной точки,  [c.75]

Уравнение (26.3) представляет собой основное уравнение динамики относительного движения материальной точки.  [c.76]

Этот результат можно получить с помощью уравнения динамики относительного движения материальной точки. См. в следующем параграфе задачу 259.)  [c.118]

Задачи динамики относительного движения материальной точки рекомендуется решать в следующем порядке  [c.126]

Для решения задачи методом динамики относительного движения материальной точки надо ко всем силам, приложенным к материальной точке, добавить силу инерции J , в переносном движении и кориолисову силу инерции 7 .  [c.127]


Для определения уравнения относительного движения груза используем уравнение динамики относительного движения материальной точки  [c.132]

Это уравнение вынужденных колебаний груза в относительном движении было нами найдено в задаче 254 (формула 12) более длинным путем. Применяя уравнение динамики относительного движения материальной точки, мы непосредственно получили уравнение относительного движения минуя определение его абсолютного движения. В решении же задачи 254 было предварительно определено абсолютное движение х% груза в формуле (7) и затем вычислены координаты точки в относительном движении по формуле (12) х — = х<а — Если требуется определить уравнение абсолютного движения груза, то более целесообразным является метод решения задачи 254. Если же требуется найти уравнение относительного движения точки, то предпочтительнее пользоваться уравнением динамики относительного движения, примененным в этой задаче.  [c.134]

Нам предстоит исследовать свободное падение материальной точки на Землю, т. е. ее относительное движение. Запишем уравнение динамики относительного движения материальной точки  [c.138]

При сложном движении материальной точки пользуются уравнениями динамики относительного движения (либо переносного движения) в проекциях на орты различных систем координат.  [c.537]

Заметим, наконец, что, пользуясь соотношением (1У.225), можно найти три основные теоремы динамики относительного движения материальной точки аналогично доказанным выше теоремам для абсолютного движения.  [c.447]

Наряду с изложенным методом большое практическое значение при составлении уравнений относительного движения имеет также метод уравнений Лагранжа, идея применения которых в динамике относительного движения совершенно естественна. Поскольку движение относительной системы по отношению к абсолютной задано, абсолютные координаты (декартовы или обобщенные) движущейся системы точек могут быть выражены как функции от относительных координат и времени. Принимая последние за независимые обобщенные координаты системы, составим уравнения Лагранжа реп. ая их, найдем относительные координаты как функции от времени, т. е. уравнения относительного движения.  [c.424]

Разберем частную, но весьма распространенную на практи)ле задачу динамики относительного движения несвободной системы материальных точек в равномерно вращающейся вокруг неподвижной оси системе координат. Примем неподвижную ось вращения за ось Ог и обозначим через а> постоянную угловую скорость вращения системы координат.  [c.428]

Глава XIX. Динамика относительного движения материальной точки 501  [c.501]

Определим, когда основной закон динамики для относительного движения точки будет совпадать с основным законом ее абсолютного движения, Как следует из урав-  [c.109]

Переносное движение — равномерное вращние вокруг неподвижной оси. В этом случае e = 0 и Ф = 0, и основное уравнение динамики относительного движения точки (26.5) примет вид  [c.78]

Ниже (при исследовании динамики относительного движения точки) будет показано, что инерциальное состояние изолированной материальной точки сохраняется не только по отношению неиодвижной системы отсчета, но и по отношению к любой системе, движущейся поступательно прямолинейно и равномерно по отношению к основной системе отсчета,  [c.93]

Уравнение (56) выражает основной закон динамики для относительного дви)<<ения точки. Сравнивая равенства (55) и (56), приходим к выводу все уравнения и теоремы механики для относительного движения тонки составляются так оке, как уравнения абсолютного движения, если при этом к действующим на точку силам взаимодействия с другими телами прибавить переносную и кориолисову силы инерции. Прибавление сил f ep и fучитывает влияние на относительное движение точки перемещения подвижных осей, м  [c.224]


Чтобы Применить к относительному движению точки какое-либо положениг динамики, необходимо, кроме действующих на точку сил, учесть переносную силу инерции точки (см, 26). Для определения этой силы найдем проекцию переносного ускорения на ось X, пользуясь заданным уравнением переносного движения  [c.150]

Теорему об изменении кинетического момента системы в ее движении относительно центра инерции можно было доказать иначе, не используя формулу (1.51), а исходя из основного закона динамики относительного движения ( 230 т. I). Как известно, всякую задачу при изучении относительного движения материальной точки можно решать как задачу об абсолЕОТ-ном движении, но вместо второго закона Ньютона для абсолютного движения нужно пользоваться основным законом динамики относительного движения  [c.66]

Вектор S, равный по величине произведению массы точки на ее ускорение и направленный в сторону, противоположную ускорению, называется силой инерции материальной точки и считается приложенным к этой точке. Представление о силах инерции будет расширено в гл. XXX в связи с рассмотрением динамики относительного движения. Сейчас удовольствуемся принятым формальным определением силы инерции и заметим, что в результате такого подхода уравнение динамики (2) свелось к уравнению равновесия (19) материальной точки под действием приложенной силы и силы инерции. Изложенный прием сведения задачи динамики к задаче статики лежит в основе метода кинетостатики, который будет в более общем виде изложен в гл. XXVIII. По своей сути метод этот относится к первой задаче динамики. Как выяснится из следующих примеров, данный метод особенно полезен при рассмотрении движений в естественной форме.  [c.22]

Прил-1енение принципа Даламбера в только что указанной формулировке служит основанием сведения задачи динамики к задаче статики с иоследуюи1,им использованием принципа возможных иеремещеинй (см. далее 154). С простейшим случаем применения приема сведения задачи динамики к задаче статики мы уже имели дело в 84, рассматривая движение отдельной материальной точки. Физическое разъяснение такого приема для указанного простейшего случая будет дано в гл. XXX, посвященной динамике относительного движения. В общем случае несвободной системы материальных точек прием сведения задач динамики к задачам статики оправдывается приведенной выше формулировкой принципа Даламбера.  [c.347]

Полученное равенство выражает динамическую теорему Кориолиса (основной закон динамики для относительного движения точки) относительное движение материальной точки моокно рассматривать как абсолютное, если к действующим на точку силам присоединить переносную и кориолисову силы инерции.  [c.109]


Смотреть страницы где упоминается термин Динамика относительного движения точки : [c.503]    [c.505]    [c.509]   
Смотреть главы в:

Техническая механика Изд2  -> Динамика относительного движения точки



ПОИСК



ДИНАМИКА Динамика точки

Движение относительное

Динамика относительного движения

Динамика относительного движения материальной точки

Динамика твердого тела, имеющего одну неподвижную точку. Движение искусственного спутника относительно центра масс

Динамика точки

Относительность движения

Точка Движение относительное

Точка — Движение

Уравнение динамики относительного движения материальной точки



© 2025 Mash-xxl.info Реклама на сайте