Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы вариационного исчисления

Если локальному подходу соответствовал аппарат дифференциальных уравнений, то глобальному подходу соответствует аппарат вариационного исчисления. В связи с тем, что основы вариационного исчисления обычно незнакомы студентам к моменту, когда изучается классическая механика, автор вынужден предпослать изложению вопросов, связанных с глобальным подходом, некоторые сведения о вариационном исчислении, ограничиваясь лишь самыми необходимыми фактами мы рассмотрим к тому же не общий, а лишь частный, недостаточный для наших целей случай, когда сравниваются кривые, принадлежащие одному и тому же однопараметрическому семейству (пучку).  [c.272]


Интегрирование уравнения (2.11) производится здесь обычными методами, и мы предоставляем читателям проделать это в качестве одного ИЗ упражнений к этой главе. (Задача о брахистохроне хорошо известна в истории математики, так как, решая эту задачу, Иван Бернулли заложил основы вариационного исчисления.)  [c.49]

Прежде чем излагать основы вариационного исчисления, приведем необходимые сведения из математического анализа и линейной алгебры. Приращение функции нескольких переменных f = f (J j, лтд, Хп) может быть подсчитано с помощью ряда Тейлора  [c.381]

ОСНОВЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ  [c.18]

Для исследования оптимальных движений механических систем со свободными (или управляющими, регулируемыми) функциями имеются мощные математические методы, составляющие в наши дни основу вариационного исчисления, или, более широко, функционального анализа. Создание реальной конструкции (ракеты, самолета, автопилота или других объектов) тесно связано с изучением экстремальных свойств функций многих переменных и функционалов. Мудрый Леонард Эйлер писал в одной из своих работ ...Так как все явления природы следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошен-  [c.141]

Мы сочли необходимым включить в настоящее издание не относящиеся по традиции к небесной механике основные соотношения и формулы сферической и эфемеридной астрономии, необходимые в расчетах по небесной механике и астродинамике, новую систему астрономических постоянных, утвержденную Международным Астрономическим союзом в 1964 г., различные системы счета времени, а также основы вариационного исчисления и математической теории оптимальных процессов, на которых базируются методы решения астродинамических задач. Эти вопросы составляют содержание частей I и УП1.  [c.19]

Интегральный вариационный принцип, о котором пойдет речь,, возник значительно раньше принципа Гамильтона в 1744 г., почти одновременно и независимо, появились работы Мопертюи и Эйлера, содержащие в зародыше изложение этого принципа. Мопертюи, формулировка которого была весьма не ясной, придавал высказанному им принципу некий всеобщий телеологический смысл — принцип выражал будто бы целенаправленность действий природы. Эйлеру принадлежит первая отчетливая формулировка математического содержания, которое следует вложить в понятие принципа принцип наименьшего действия есть интегральный вариационный принцип, позволяющий вывести дифференциальные уравнения движения — уравнения экстремалей. В работах, посвященных принципу наименьшего действия, Эйлером быv м созданы основы вариационного исчисления и показано значение интегрального вариационного принципа в механике. Но несмотря на это, сам Эйлер всегда подчеркивал приоритет Мопертюи. Можно предполагать, что выступления Эйлера на стороне Мопертюи в спорах того времени по поводу философского смысла и научно-познавательного значения принципа привели к тому, что имя Мопертюи удержалось в названии принципа. Отметим, кстати, что само название принцип наименьшего действия ,, сохранившееся ло наших дней, принадлежит Мопертюи.  [c.251]


Попытка максимизировать быстродействия и КПД с помощью аналитических методов сделана в [15]. Задача быстродействия решена на основе принципа максимума для линейной зарядной системы второго порядка при пренебрежении индуктивностью в зарядной цепи. Задача о КПД решена методами классического вариационного исчисления также для системы второго порядка при пренебрежении инерционностью обмотки возбуждения и отсутствии корректного учета граничных условий. Допущения, сделанные в обоих случаях, сильно ограничивают практическую применимость полученных результатов. Поэтому в данном примере обе задачи решаются поисковыми методами, не требующими указанных выше допущений.  [c.220]

Решение задач теплопроводности может быть получено еще одним численным методом — метод ом конечных элементов. Математической основой метода конечных элементов является вариационное исчисление. В отличие от метода конечных разностей, в котором исходные дифференциальные уравнения непосредственно используются для построения разностной схемы, в методе конечных элементов дифференциальное уравнение теплопроводности и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается численно.  [c.246]

Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]

Приводимое далее доказательство обращения в нуль выражения в круглых скобках формулы (13) является стандартным. Оно лежит в основе доказательства так называемой основной леммы вариационного исчисления (см. лемму 1 в 3 учебника Гельфанд И. М., Фомин С. В. Вариационное исчисление, М. Физматгиз, 1961).  [c.473]

Это означает, что мы выразим половину Т, относительной живой силы системы как функцию скоростей ц любых отметок относительного положения и затем, взяв вариацию Т относительно р, заменим эти вариации вариациями самих отметок положения вычтем начальное значение результата из конечного и сложим вариации конечной и начальной функций <р, и Ф,, которые входят в уравнения условий д>, = О, Ф, = О (соединяющие конечные и начальные отметки относительного положения), соответственно помноженные на неопределенные множители А,, Л, наконец, приравняем полный результат величине б V, —t дН,, где Н, является независимой от времени величиной в уравнении (50) относительной живой силы, а V, является относительным действием, вариацию которого мы хотим найти. Нет необходимости останавливаться здесь на демонстрации этого нового правила (У ), которое легко можно вывести либо на основе уже изложенных принципов, либо исходя из закона живой силы, при помощи вариационного исчисления в сочетании с дифференциальными уравнениями второго порядка относительного движения.  [c.197]

Как мы видим, при соответствующем толковании немногие простые предположения, высказанные в аксиомах I и II, оказываются достаточными для построения теории, посредством которой не только в корне преобразуются наши представления о пространстве, времени и движении в направлении, указанном Эйнштейном, но и, как я убежден, при помощи составленных здесь уравнений будут разъяснены сокровеннейшие, до сих пор скрытые явления внутри атома, и на их основе должно оказаться возможным вообще свести все физические постоянные к математическим постоянным. Таким путем мы приближаемся к возможности превратить в принципе физику в науку, подобную геометрии, которая составляет, несомненно, прекраснейший образец аксиоматического метода, пользующегося в данном случае услугами мощных инструментов математического анализа, а именно вариационного исчисления и теории инвариантов.  [c.598]


Используемые в книге сведения из вариационного исчисления приведены в гл. 1. В гл. 2 изложены основы теории преобразования вариационных проблем, которая рассмотрена в несколько более общей форме, чем в [0.9], с применением выпуклого анализа для изучения экстремальных свойств функционалов. Для построения и систематического исследования систем функционалов оказалось целесообразным выделить полные функционалы (без каких-либо дополнительных условий) в качестве узловых пунктов вариационной теории упругости или оболочек и совокупность частных функционалов, имеющих дополни-  [c.8]

Предполагается, что читатель знаком с основами теории упругости, теории пластичности и вариационного исчисления. Из-за недостатка места в книге отсутствует изложение основ вариационного исчисления, и автор ограничился лишь ссылками на некоторые книги по этому предмету, приведенными в конце введения.  [c.13]

Этот принцип является в известной степени аналогом принципа минимума потенциальной энергии деформаций, широко используемого в теории упругости. Принцип Гельмгольца в гидродинамике вязкой жидкости, так же как принцип минимума потенциальной энергии в теории упругости, может быть положен в основу применения прямых методов вариационного исчисления для решения задач о медленном движении, в частности для задач гидродинамической теории смазки.  [c.430]

Несмотря на то, что автор ориентировался на подготовленного читателя, владеющего основами теории упругости, строительной механики, вариационного исчисления, матричной алгебры и программирования, в книге детально поясняются все исход-  [c.3]

Монография написана в основном по результатам исследований автора и его учеников и не имеет аналогов ни в отечественной, ни в зарубежной научной литературе. Для ее чтения предполагается знакомство с основами теории колебаний и волн, а также вариационного исчисления и математической физики в объеме университетских курсов.  [c.11]

К. Основополагающим соотношением для рассмотренных в этой главе способов определения перемещений балок является полученное на основе гипотезы плоских сечений в 1694 г. Яковом Бернулли соотношение (8.2.6) между кривизной деформированной оси балки и изгибающим моментом. Племянник Я. Бернулли Даниил применил это соотношение к анализу малых поперечных колебаний балки. Он же предложил своему ученику Л. Эйлеру заняться задачей об упругих кривых с помощью разрабатываемого последним аппарата вариационного исчисления. Этой задачей с разных позиций Эйлер занимался всю свою жизнь. Он разработал метод реше-  [c.245]

В практических задачах ограничения нередко образуют некоторое замкнутое множество допустимых значений управлений. В таких случаях решение соответствующей задачи оптимального управления на основе классических методов вариационного исчисления становится невозможным. В рамках подобных задач и были созданы принцип максимума Понтрягина и метод динамического программирования Беллмана, образовавшие ядро современной математической теории управления.  [c.63]

В.Н. Шакиров [115] рассмотрел разнообразные задачи для объекта (1.6) в предположении, что f x,t) = р 1)д х), где ]э( ) и д х) — управляющие функции (разделенное управление). Им исследована задача управляемости таких объектов, получены условия оптимальности и предложены методы построения программных и синтезированных управлений на основе идей классического вариационного исчисления. И.И. Воронцов в [21] рассмотрел задачу минимизации функционала  [c.14]

Трудно указать первые работы, в которых, по существу, было начато изучение проблем оптимального управления. Эти проблемы зародились в недрах специальных технических дисциплин, где и решались сначала в каждом случае соответствующими приемами. По-видимому, основу этих приемов в большинстве случаев составляли методы классического вариационного исчисления. Постепенно однако, проблемы наилучшего управления стали приобретать все больший удельный вес. Выкристаллизовались общие математические постановки задач, необходимость разрешения которых привела к организации самостоятельного научного направления. Это явление можно отнести к концу сороковых годов, когда особенно возрос интерес к проблемам управления реактивным движением.  [c.182]

Для исследования оптимальных движений механических систем со свободными (или управляющими, регулируемыми) функциями имеются мощные математические методы, составляющие в наши дни основу вариационного исчисления или, более широко, функционального анализа. Создание реальной конструкции (ракеты, самолета, автопилота) тесно связано с изучением экстремальных свойств функций многих переменных и функционалов. Мудрый Леонард Эйлер писал в одной из своих работ ...так как все явления природы следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, если на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума . Анализ содержания научных статей по динамике полета, опубликованных за последние 20—25 лет, убеждает нас в том, что методы вариационного исчисления не только позволяют выделять из бесконечного разнообразия возможных движений, определяемых дифференциальными уравнениями механики, более узкие классы движений, для которых некоторые (обычно интегральные) характеристики будут оптимальными в ряде случаев они дают возможность детального аналитического исследования, так как для некоторых экстремальных режимов уравнения движения интегрируются в конечном виде. Опорные аналитические решения для оптимальных движений можно находить во многих трудных задачах, когда системы исходных уравнений являются нелинейными. Как эмпирический факт можно отметить, что для классов оптимальных движений нелинейные дифференциальные уравнения становятся более податливыми и в большом числе задач Зо-пускают интеграцию в квадратурах. Мы уверены в том, что семейства аналитических решений нелинейных уравнений механики в конечном виде внутренне тесно связаны с условиями оптимальности и в задачах динамики ракет и самолетов играют роль невозмущенных движений, аналогичных кеплеровым движениям в задачах небесной механики .  [c.35]


Д. Ф. Егоров, кроме дифференциальной геометрии, занимался также различными вопросами анализа. Он впервые прочел серьезные курсы вариационного исчисления и дифференциальных уравнений. Вместе с Млод-зеевским он явился зачинателем московского направления метрической теории функций действительного переменного, которое несколько позже трудами ученика Егорова Н. Н. Лузина (1883—1950) и его учеников явилось основой, на которой были созданы мош,ные исследовательские направления Московской математической школы.  [c.16]

Таким образом, существенным недостатком классического вариационного исчисления является практическая невозможность учета в сложных задачах ограничений в форме неравенств. В современной математике разработан ряд методов учета таких ограничений—метод штрафных функций, методы возможных направлений (проекционные методы), метод модифицированных множителей Лагранжа, принцип максимума Понтрягина. Первые два метода, используемые в данной работе, будут рассмотрены ниже более подробно. Анализ метода модифицированных множителей Лагранжа применительно к энергетическим задачам проведен в работах [Л. 47, 48]. Исследования по применению принципа максимума Понтрягина к задаче оптимизации долгосрочных режимов ГЭС только еще начаты в работах Л. С. Беляева, Далина, Шена, Нариты [Л. 48, 95, 96]. Авторы отмечают большую перспективность этого метода решения задачи. Исследования но применению принципа максимума Понтрягина, по-видимому, позволят дать объективную оценку этому методу. В настоящей работе этот метод не рассматривается. Р ешение задачи на основе интегрирования дифференциальных уравнений Эйлера не получило в настоящее время распространения, хотя и не доказано, что оно бесперспективно.  [c.37]

Некоторые авторы, прежде всего Плезет, Цвик и Зубр, рассматривали асимптотический рост и разрушение парового пузыря при кипении недогретой жидкости, считая такой рост и разрушение двумя отдельными процессами. На основе энергетических соображений и отправных предпосылок модели парового пузыря по Плезету и Цвику нам удалось вывести интегральное уравнение траектории поверхности раздела жидкость — пар в процессе роста и разрушения парового пузыря. Из этого интегрального уравнения находится простая зависимость как для асимптотического роста, так и для процесса разрушения, если отметить существование стационарной точки в момент разрушения и воспользоваться методами вариационного исчисления для отыскания траектории рост — разрушение.  [c.410]

Одной из ключевых и принципиальных проблем динамики систем с движущимися границами и нагрузками была корректная математическая постановка краевых задач в частных производных. Еще со времен С.П. Тимошенко движущуюся нагрузку заменяли некоторой эквивалентной сосредоточенной силой. Однако такой подход был некорректен, и при больших отно сительных скоростях движения нагрузок приводил к неправильным выводам. В результате многолетних поисков была разработана универсальная процедура постановки с амосогласованных задач динамики упругих систем с движущимися по ним объектами на основе вариационного принципа Гамильтона-Остроградского. Возникающие при этом вариационные задачи оказались неклассическими, что потребовало проведения дополнительных разработок по вариационному исчислению. Новыми оказались и получаемые таким путем краевые задачи математической физики. Их принципиальное отличие от классических задач состоит в наличии дополнительного существенно нелинейного краевого условия, описывающего взаимовлияние движущегося объекта и колебаний упругой направляющей. Физический смысл последнего условия состоит в том, что при взаимодействии распределенной системы с движущимся со средоточенным объектом возникают силы вибрационного давления. На существование таких сил впервые обратили внимание еще Рэлей (1902 г.) и Е.Л.Николаи (1912-1925 гг.), изучавшие колебания струны с движущимся вдоль нее кольцом. Предложенный подход позволил по-новому взглянуть на проблемы динамики упругих систем, несущих подвижные нагрузки, и вскрыть новые, ранее не учитываемые явления.  [c.9]

Хорошо известно из истории науки, что из простейших задач механики развились многие весьма содержательные математические дисциплины. Так, задача о форме кривой наибыстрейшего ската в однородном поле силы тяжести (задача о брахистохроне) привела к созданию вариационного исчисления, а затем и функционального анализа. Обобщения основных понятий механики (момента силы, работы силы, напряжения, деформации) составляют, в сущности, реальное основание векторного и тензорного анализа. Мы думаем, что конкретные задачи механики и физики обогащали математику идейным содержанием и оттачивали ее логические построения не меньше, чем абстрактные, предельно формализованные исследования в чисто внутренних областях математики. Абстрактные исследования содержательны и эвристичны при условии, что в их основе лежат (или предугаданы) некоторые количественные закономерности объективно существующих форм движения материи.  [c.10]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]

Динамические задачи оптимального управления системами математически корректно были, вероятно, впервые сформулированы в работах A.A. Фельдбаума. Основы математической теории оптимальных процессов были заложены коллективом математиков под руководством академика Л.С. Понтрягина. Эти работы послужили источником многочисленных исследований. Одно из направлений исследований связано с решением задач об оптимальном управлении систем с распределенными параметрами (см. [11-13, 26, 27, 31-41, 79, 86, 101]). Те же задачи исследовались методами классического вариационного исчисления [79, 81, 85, 106, 110, 111]. Работам этого типа посвящены многочисленные обзоры (см., например, [12, 91, 127]). В задачах управления упругими колебаниями процесс зачастую можно описать уравнениями с отклоняющимися аргументами. Поэтому в теории управления системы с запаздыванием рассматривались многими авторами (см., например, [73]). Это направление в исследованиях по управлению колебаниями здесь не обсуждается и является темой специального анализа.  [c.7]


В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]


Смотреть страницы где упоминается термин Основы вариационного исчисления : [c.14]    [c.16]    [c.20]    [c.22]    [c.24]    [c.26]    [c.15]    [c.185]    [c.151]    [c.7]    [c.439]    [c.171]    [c.140]    [c.228]    [c.439]    [c.386]    [c.194]    [c.393]    [c.276]   
Смотреть главы в:

Механика сплошных сред  -> Основы вариационного исчисления



ПОИСК



Вариационное исчисление

Исчисление — ш (ш-исчисление)

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте