Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача п тел уравнения движения

Пусть имеются три материальные точки Яо, Яь Яг с массами Шо ф О, гп ф О, ГП2 Ф О, взаимно притягивающие друг друга по закону всемирного тяготения. Неограниченная задача трех тел состоит в определении и изучении всевозможных движений материальных точек Яо, Ри Яг- Поскольку задача трех тел — частный случай задачи п тел, уравнения движения в различных системах координат могут быть получены из уравнений задачи п тел (ч. IV, гл. 1), если положить в них п = 2.  [c.524]


Совокупность таких уравнений при I = 2, 3,. .., п является искомой системой уравнений относительного движения п тел. Ясно, что 1) если в системе нет других тел т, (/ ф I) или они пренебрежимо малы, то правая часть уравнения становится равной нулю и в результате получается уравнение задачи двух тел (уравнение движения т, относительно т), 2) первый член в скобках в правой части представляет собой ускорение тела т,, вызванное влиянием тела т/ (/ Ф 1), 3) второй член в скобках в правой части равен взятому со знаком минус ускорению тела т, обусловленному влиянием тела т/ (/ О-  [c.182]

Пусть имеется п материальных точек с массами т, ..гпп, взаимодействующих друг с другом по закону тяготения Ньютона. Система уравнений движения для задачи п тел имеет вид  [c.266]

Полагая число групп равным п, мы получим, написав уравнения движения п центров тяжести, Зл дифференциальных уравнений второго порядка, — по три для каждого центра тяжести. Эти уравнения, интегрирование которых составляет задачу п тел, допускают семь известных первых интегралов, которые мы укажем как приложения общих теорем о движении системы. Современные средства анализа не допускают выполнения интегрирования этих уравнений. Тем не менее в небесной механике оказалось возможным при помощи этих уравнений вычислить с достаточной степенью точности движение центров тяжести небесных тел благодаря тому, что массы всех тел солнечной системы очень малы по сравнению с массой Солнца. Так, масса Юпитера, наибольшая во всей системе, не составляет тысячной доли массы Солнца, Приведя число тел к трем, получим знаменитую задачу трех тел.  [c.349]

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]


Как известно, дифференциальные уравнения задачи п тел допускают десять классических интегралов шесть интегралов количества движения, три интеграла площадей и один интеграл энергии, которые соответствуют законам сохранения количества движения, кинетического момента и механической энергии системы. Эти интегралы обладают тем свойством, что они алгебраически содержат координаты и скорости точек. На вопрос, существуют ли другие подобные интегралы, отвечает теорема Брунса  [c.108]

В исследованиях, описанных выше, предполагалось, что движение п тел регулярно, т. е. происходит без соударений и удаления на бесконечность. Между тем изучение особых траекторий динамических задач вообще и задачи п тел в частности имеет очень большое значение для определения условий, при которых данное движение будет устойчивым или неустойчивым. Могущественные методы качественной и аналитической теории дифференциальных уравнений, созданные А. М. Ляпуновым и А. Пуанкаре, позволяют проникнуть в природу механического движения и исследовать особенности интегралов дифференциальных уравнений, описывающих это движение. Потребность в качественных методах исследования вызвана тем, что многочисленные и очень важные задачи механики, математического анализа, геометрии, математической физики и прикладных наук приводят к дифференциальным уравнениям, не интегрирующимся в конечном виде. Таким образом, возникает необходимость в разработке методов изучения свойств функций непосредственно по дифференциальным уравнениям, их определяющим. Вот почему доказательство теорем существования, изучение критических точек, особых траекторий и устойчивости решений составляли и составляют фундамент исследований ряда крупных отечественных и зарубежных ученых  [c.111]

При решении задач уравнением (64) целесообразно пользоваться тогда, когда система состоит только из одного вращающегося тела. Если в системе кроме одного вращающегося тела есть еще другие движущиеся тела (см., например, задачи 133, 138 и т. п.), то уравнение движения лучше составлять с помощью общих теорем или методов, изложенных в 168, 173, 178.  [c.390]

Сравнительная простота решения задачи п тел при описании движения планет (это достаточно сложная задача, изучением которой занимается небесная механика) связана с тем, что 1) масса одной точки - Солнца - в 1000 раз превосходит самую большую из остальных масс - Юпитер, 2) в процессе движения планеты не сближаются друг с другом. Оказывается, что при приближенном описании можно в правых частях уравнений движения к-й планеты учитывать только ее взаимодействие с Солнцем и пренебрегать влиянием на нее остальных планет. Тем самым в первом приближении задача сводится к задаче двух тел Солнце - планета, которую, как было отмечено, умеют решать аналитически. Так и делают. Но такое упрощение может дать лишь грубое описание движения. Для более точного решения задачи используют методы теории возмущений. В теории возмущений разработаны методы, с помощью которых последовательно уточняют решение задачи на ограниченных интервалах времени (порядка сотни лет). Сейчас мы можем предсказывать положение планет относительно Солнца с точностью порядка  [c.49]

Полученные уравнения будем называть уравнениями относительного движения задачи п тел.  [c.52]

Запишем снова уравнения относительного движения в задаче п тел  [c.71]

В этой главе приводятся различные формы дифференциальных уравнений движения задачи п тел, рассматриваемых как материальные точки, а также их первые интегралы. Подробные выводы можно найти в учебниках и монографиях [1] — [8].  [c.288]

ГЛ. I. УРАВНЕНИЯ ДВИЖЕНИЯ ЗАДАЧИ п ТЕЛ  [c.297]

ГЛ. 1. УРАВНЕНИЯ ДВИЖЕНИЯ ЗАДАЧИ п ТЕЛ 309  [c.309]

В 1.13—1.19 были приведены канонические формы уравнений абсолютного и относительного движения задачи п тел. Интегрирование канонических уравнений движения механической схемы с k степенями свободы тесно связано с интегрированием одного уравнения в частных производных, называемого уравнением Гамильтона — Якоби. Оно имеет вид  [c.318]


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВОЗМУЩЕННОГО ДВИЖЕНИЯ ЗАДАЧИ п ТЕЛ ДЛЯ РАЗЛИЧНЫХ СИСТЕМ ОСКУЛИРУЮЩИХ ЭЛЕМЕНТОВ  [c.347]

ГЛ. 4. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ЗАДАЧИ п ТЕЛ 349  [c.349]

Решить пример 2 из данного параграфа, рассмотрев точку А для описания движения автомобиля как жесткого тела. Уравнения движения в усилиях для указанной точки были получены в виде (3.14а) в п. 3.4. (Для решения этой задачи потребуется использовать результаты решения задачи 3.5.9).  [c.225]

Хорошо известно, что классическая небесная механика занимается главным образом различными аспектами так называемой задачи п тел . Эта задача состоит в изучении движения п материальных точек р , притягивающих друг друга в соответствии с законом Нью-тона . Обозначив через m массу точки pi. через r ее радиус-вектор и через 7 постоянную тяготения, имеем следующую систему уравнений движения  [c.18]

Уравнения движения в задаче п тел можно записать в сокращенном виде следующим образом  [c.39]

Простейший случай периодического решения будем иметь в том случае, когда координаты совершенно пе зависят от времени. Такие решения назовем равновесными. Прежде всего покажем, что задача п тел (п > 1) пе имеет равновесных решений. В самом деле, если бы каждая координата д пе зависела от времени, то ее вторая производная с = 0 следовательно, в соответствии с уравнениями движения (5 3) также 11д равнялось бы пулю, и но теореме Эйлера об однородных функциях  [c.126]

Уравнения движения задачи п тел  [c.130]

Найти другие интегралы никому не удалось, а Брунс и Пуанкаре доказали, что в задаче п тел кроме интеграла энергии, интегралов площадей и интегралов, определяющих движение центра масс системы, не существует других интегралов, которые выражались бы соотношениями, включающими только алгебраические и интегральные функции координат и скоростей тел, были справедливы для любых тел и удовлетворяли уравнениям движения.  [c.134]

Точное решение задачи. Воспользовавшись методикой, изложенной в п. а), получим дифференциальное уравнение движения тела 1  [c.181]

Задача й-f-l тел каноническая форма Пуанкаре для уравнений ОТНОСИТЕЛЬНОГО движения. Значительно более важная иллюстрация общих рассуждений предыдухДего параграфа дается в задаче п- - тел (или вообще и-f-l свободных точек, находящихся исключительно под действием внутренних сил), когда стараются получить решение из интегралов количеств движения (или количества движения центра тяжести)  [c.315]

Современная теория годографов ньютоновой механики позволяет произвести полный анализ годографа траекторий в векторном пространстве любого порядка. Теория годографов для баллистических траекторий включает в себя уравнения движения, функции преобразования годографов и годографические отображения для пространств ускорений и скоростей. Одно из основных направлений дальнейшей работы состоит в выводе и применении определяющих уравнений годографа для активных участков траектории, а также в разработке методов синтеза, главным образом с помощью дифференциальной и инверсивной геометрий. Другим не менее важным направлением является распространение теории годографов на траектории, определяемые присутствием более чем одного притягивающего тела (ограниченная задача трех тел, задача п тел). Оба направления, по-видимому, в достаточной степени перспективны как с аналитической (новые методы небесной механики), так и с инженерной (новые принципы построения систем управления и наведения) точек зрения.  [c.40]

Современная теория годографа в ньютоновой механике позволяет полностью исследовать поведение годографа траектории в ньютоновом векторном пространстве любого данного порядка. Теория годографа для баллистических траекторий представлена уравнениями движения, контурными сетками и функциями преобразования годографа в векторных пространствах скоростей и ускорений. Одно из основных направлений, в которых эта область продолжает развиваться,— разработка и применение определяющих уравнений годографа и метода синтеза к исследованию активных участков траекторий главным образом путем использования дифференциальной геометрии. Другое важное направление — применение теории годографа к траекториям, связанным более чем с одним притягивающим центром (ограниченная задача трех тел и задача п тел). Оба направления обещают принести свои плоды как с аналитической точки зрения современной небесной механики, так и в отношении технических приложений к проектированию перспективных систем наведения и управления. Илл. 25. Библ, 50 цазв.  [c.236]

П. В. Воронец опубликовал новый метод преобразования дифференциальных уравнений динамики, который позволил значительно расширить известные ранее результаты в области задачи п тел. Развивая идею Э- Рауса об игнорировании координат , он показал, что в случае, когда уравнения движения системы допускают линейные относительно скоростей интегралы, из этих уравнений можно исключить циклические координаты и соответствующие им скорости и ускорения. Этот метод дал возможность П. В. Во-110 ронцу сравнительно просто получить известные результаты Ж. Лагранжа, К. Якоби, Э. Бура, А. Бриоши и Р. Радо при произвольном законе притяжения. П. В. Воронец подробно исследовал задачу четырех тел и указал случай интегрируемости в квадратурах для закона притяжения обратно пропорционально кубам расстояний. В случае сил взаимодействия, пропорциональных любой степени расстояний, он установил возможность двух типов движений. Исследуя дифференциальные уравнения задачи трех тел Ув форме Лагранжа, Воронец изучил случай аннулирования кинетического момента, а также случай пространственного движения, при котором образуемый телами треугольник остается равнобедренным и массы точек, расположенных в его основании, равны.  [c.110]


Дальнейшее развитие проблемы п тел принадлежит Ю. Д. Соколову многочисленные исследования которого посвящены изучению особых траекторий системы свободных материальных точек, взаимно притягивающихся или отталкивающихся с силами, пропорциональными произвольной функции взаимных расстояний. Соколов обобщил на случай произвольных сил взаимо-114 действия в задаче п тел теорему Пенлеве о минимуме взаимных расстояний, теорему Шази о парном соударении в неизменяемой плоскости, теорему Дзио-бека о движении точек в неподвижной центральной плоскости при аннулировании кинетического момента системы относительно ее центра масс и теорему Слудского—Вейерштрасса об общем соударении тел. Он установил нижнюю границу радиусов сходимости разложений координат точек системы около момента регулярного движения. Обобпщв уравнение Лагранжа — Якоби, он исследовал поведение квадратичного момента инерции при стремлении t к некоторому особому моменту ti или оо. Соколов изучил траектории парного соударения в общей задаче трех тел, исследовал характер особых, Точек интегралов прямолинейного движения. Рассматривая ограниченную задачу трех тел в обобщенной постановке, он исследовал поведение искомых функций и доказал существование решения задачи, установил инвариантное соотношение, характеризующее условие соударения. Результаты этих исследований Соколов успешно применил к решению задач о притяжении к неподвижному и равномерно вращающемуся центрам.  [c.114]

В солнечной системе орбиты больших планет, за исключением Плутона, имеют малые наклонности относительно общей плоскости, за которую можно выбрать такую плоскость, в которой момент количества движения системы достигает максимума. Это так называемая неизменяемая плоскость Лапласа. Если пренебречь координатами, перпендикулярными к этой плоскости, то уравнения движения относятся к задаче га тел, движущихся в общей плоскости. Такая система имеет порядок 4га, Число общих интегралов теперь равно 4 + 1-)-1 = 6, и порядок может быть понижен до 4га —6. Для задачи трех тел в плоскости понижением порядка приходим к системе шестого порядка. Как и в трехмерной задаче, возможно еще одно понижение порядка этой системы на две единицы. Следовательно, для задачи трех тел в плоскостп окончательное понижение порядка приводит к системе четвертого порядка, для задачи п тел в плоскости —к системе порядка 4га-8.  [c.222]

Напишите уравнения (1), кэгда сила изменяется обратно пропорциональьв я-й степени расстояния. Для каких значений п все уравнения становятся независимыми Задача п тел может быть полностью решена для этого закона силы покажите, что по отношению к центру массы системы все орбиты — эллипсы с центром в этой точке. Покажите, что орбита любого тела по отношению ко всякому другому также является центральным эллипсом н что то же самое имеет место в движении всякого тела по отношению к центру массы любой подгрунпы всей системы. Покажите, что все периоды равны.  [c.241]

Другой подход к решению задачи п тел связан с использованием специальных возмуи ений. Поскольку при этом производится пошаговое численное интегрирование дифференциальных уравнений движения от начальной эпохи до эпохи, в которую нам нужно знать положения тел, то до тех пор, пока не были созданы быстродействующие вычислительные машины, многие ученые — небесные механики избегали пользоваться таким методом. Однако метод специальных возмущений обладает большим преимуществом, которое состоит в том, что его можно применять к любым орбитам и к системам, состоящим из любого числа тел. В наши дни внимание ученых направлено на применение специальных возмущений  [c.129]

В 1773 г. Лаплас опубликовал теорему, впоследствии уточненную Пуассоном (до второго порядка по возмущающим массам), из которой следовало, что Солнечная система устойчива в том смысле, что движение каждой планеты постоянно ограничено собственным сферическим слоем, причем слои разных планет никогда не пересекаются друг с другом. Другими словами, изменения больших полуосей являются чисто периодическими. Зате.м (в 1784 г.) Лаплас, воспользовавшись уравнениями движения планет в форме Лагранжа, пришел к выводу, что наклонения и эксцентриситеты планетных орбит должны все время оставаться малыми. Свои результаты он получил, учитывая лишь первые и вторые порядки этих малых величин. Американский астроном Саймон Ньюком [23] показал, что если массы всех тел, кроме одного, малы (по сравнению с массой единственного большого тела) и орбиты малых тел имеют малые эксцентриситеты и наклонения, то такая задача п тел имеет решение в виде бесконечных многократных периодических тригонометрических рядов. При этом, однако, оставался решающий вопрос о том, сходятся илн расходятся ряды Ньюкома. Если ряды сходятся, то реальные движения планет должны быть ква-зипериодическпми если они расходятся, то о поведении планетных орбит на больших интервалах времени ничего сказать нельзя.  [c.278]


Смотреть страницы где упоминается термин Задача п тел уравнения движения : [c.9]    [c.17]    [c.305]    [c.311]    [c.313]    [c.357]    [c.304]    [c.39]    [c.39]    [c.512]   
Лекции по небесной механике (2001) -- [ c.41 ]



ПОИСК



АНАЛИТИЧЕСКАЯ ТЕОРИЯ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧАХ ТЕОРИИ ФИЛЬТРАЦИИ Применение теории линейных дифференциальных уравнений к некоторым случаям движения грунтовой воды

Вариационный принцип ДАламбера-Лагранжа в задаче о движении идеальной несжимаемой жидкости Поле реакций связей. Уравнение Эйлера

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ ГАМИЛЬТОНА—ЯКОБИ Важная роль производящей функции в задаче о движении

Две основные задачи динамики. Уравнения движения точки в декартовых осях

Движение изменяемого твердого тела (Уравнения Лиувилля) Обобщенная задача о движении неголономного шара Чаплыгина Движение шара по сфере Ограниченная постановка задачи о вращении тяжелого твердого тела вокруг неподвижной точки Неинтегрируемость обобщенной задачи Г. К. Суслова Движение спутника с солнечным парусом

Движение материальной точки под действием следящей силы. 2. Задача Суслова 3. Задача о траектории преследования Уравнения Пуанкаре

Дифференциальные уравнения возмущенного движения в основной задаче небесной механики

Дифференциальные уравнения возмущенного движения задачи п тел для различных систем оскулирующих элементов

Дифференциальные уравнения движения и решение задач динамики точки

Дифференциальные уравнения движения материальной точки Мб Решение первой задачи динамики (определение сил по эаданнояу движению)

Дифференциальные уравнения движения материальной точки. Две задачи динамики

Дифференциальные уравнения движения несвободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения свободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения свободной материальной точки. Две основные задачи динамики

Дифференциальные уравнения движения стенки как системы с двумя степенями свободы и приближенное решение задачи

Дифференциальные уравнения движения точки. Решение задач динамики точки

Дифференциальные уравнения относительного движения задачи многих тел

Дифференцирование операторов по времени, скобки Пуассона. Квантовые уравнения Гамильтона. Интегралы движения Теоремы Эренфеста Задачи

Другие виды дифференциальных уравнений движения задачи многих тел

Задача Кеплера. Интегрирование уравнений плоского движения

Интегрирование дифференциального уравнения плавно изменяющегося движения грунтовой воды (для плоской задачи)

Историческое введение (И). 2. Законы движения и. чакон тяготения Уравнения движения задачи двух тел

Классификация колебаний стержней. Дифференциальное уравнение продольных колебаний. Численные значения постоянных для стали. Решение для стержня, свободного на обоих концах. Вывод решения для стержня с одним свободным и другим закрепленным концом. Стержень с двумя закрепленными концами. Влияние малой нагрузки. Решение задачи для стержня с прикрепленной к нему большой нагрузкой. Отражение в точке соединения. Поправка иа поперечное движение. Хриплый звук Савара. Дифференциальное уравнение для крутильных колебаний. Сравнение скоростей продольной и крутильной волн Поперечные колебания стержней

Краевые задачи и экстремальные теоремы (Начально-краевая задача. Частные краевые задачи Законы трения пористых тел. Уравнение виртуальных мощностей. Экстремальное свойство действительного поля скоростей для краевой задачи нестационарного течения. Экстремальное свойство действительного поля напряжений для краевой задачи нестационарного течения. Экстремальное свойство действительного поля скоростей при установившемся движении)

Лекция первая (Задача механики. Определение материальной точки. Скорость. Ускорение или ускоряющая сила. Движение тяжелой точки. Движение планеты вокруг Солнца. Правило параллелограмма сил. Дифференциальные уравнения задачи трех тел)

Некоторые простейшие применения дифференциальных уравнений движения материальной точки. Методические указания к решению задач динамики

Общее уравнение. Простое гармоническое движение. Нормальные моды колебаний. Энергетические соотношения. Случай малой связи Случай резонанса. Передача энергии. Вынужденные колебания. Резонанс и нормальные моды колебания. Движение при переходных процессах Задачи

Общий метод решения задачи о движении твердого тела Уравнения Эйлера

Ограниченная задача. Уравнения движения

Описание полуклассической модели Комментарии и ограничения Следствия полуклассических уравнений движения Задачи Полуклассическая теория проводимости в металлах

Основное уравнение динамики вращательного движения твердого тела. Две задачи динамики вращательного движения

Основные уравнения и задачи движения идеальной жидкости

Постановка задачи и уравнения движения

Постановка задачи, системы координат и уравнения движения

Постановка задачи. Нелинейные уравнения движения

Постановка задачи. Общие уравнения движения

Постановка задачи. Различные формы дифференциальных уравнений движения

Потенциальная энергия взаимодействия однородного шара и частицы. Первые интегралы. Решение задачи Кеплера. Движение по эллипсу. Траектория частицы в пространстве. Орбитальные полеты. Коррекция траектории Уравнения Лагранжа

Приложение к задаче движения материальной точки, уравнения движения которой допускают квадратичный относительно скоростей интеграл

Применение дифференциальных уравнений движения свободной материальной точки к решению второй задачи динамики точки

Применение дифференциальных уравнений движения свободной материальной точки к решению первой задачи динамики точки

Применение теории линейных дифференциальных уравнений к некоторым задачам о движении грунтовых вод (случай трех особых точек)

Применение теории линейных дифференциальных уравнений к некоторым задачам о движении грунтовых вод (число особых точек больше трех)

Принцип виртуальных мощностей для медленных движений Геометрическая интерпретация проблемы минимума функционала. Уравнение Эйлера для недифференцируемого функционала. Эквивалентность принципа виртуальных мощностей задаче о минимуме функционала Теоремы существования

Развернутая форма характеристических уравнений для задачи о движении ракеты

Различные формы дифференциальных уравнений движения задачи трех тел

Решение тяговых задач аналитическим и графическим методами при помощи уравнения движения поезда

Специальная форма уравнений движения и представление решения задачи через гармонические коэффициенты влияния

ТЕОРИЯ ВОЗМУЩЕННОГО ДВИЖЕНИЯ (ГРЕБЕНИКОВ Е. А., РЯБОВ Ю. А.) Дифференциальные уравнения движения задачи п тел в координатах

Тяговые задачи - Решение с применением уравнения движения поезда

У уравнение движения оболочечных конструкций задачи)

У уравнение движения оболочечных конструкций нагруженной внешним давлением (решение задачи)

Уравнение Чаплыгина (общая задача о двухмерном стационарном движении сжимаемого газа)

Уравнение движения. Простые гармонические колебания. Нормальные моды колебании. Вынужденные колебания Задачи

Уравнение неравномерного безнапорного движения грунтовых вод для горизонтального подстилающего слоя (плоская задача случай

Уравнения Аппеля для неголономных систем Задача о движении конька

Уравнения в переменных Делона для общей задачи движения планет

Уравнения возмущенного движения в переменных действие-угол и метод усреднения. Эволюция . переменной действие в задаче Ван дер Поля

Уравнения движения ограниченной задачи трех тел

Уравнения движения спутника относительно центра масс в ограниченной задаче. Интеграл типа Якоби Устойчивое положение относительного равновесия

Уравнения движения. Потенциальные функции. Постановка задач динамики



© 2025 Mash-xxl.info Реклама на сайте