Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения движения точки. Решение задач динамики точки

Если движение неинерциальной системы в некоторой инерциальной известно, то дифференциальные уравнения движения материальной точки в ней (8.6) составить легко. Обе силы инерции определяются по формулам (8.4) и (8.5). На практике отнесение движения к неинерциальной системе в ряде случаев позволяет значительно упростить решение второй задачи динамики.  [c.101]

С помощью дифференциальных уравнений движения свободной материальной точки (7.2) —(7.4), несвободной точки (7.8) и (7.10) и дифференциальных уравнений относительного движения (7.17) можно решить две основные задачи динамики точки (следует отметить что эти же две задачи ставятся при решении задач динамики механической системы).  [c.110]


Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Получили систему из п векторных уравнений. Проецирование этих уравнений на оси декартовых координат приводит к Зп дифференциальным скалярным уравнениям движения системы. Эти уравнения позволяют в принципе, как и в динамике точки, решать две основные задачи определять силы по заданному движению системы и определять движение системы по заданным силам. Но на практике при решении- второй задачи динамики системы возникают большие математические трудности и ее точные решения для системы из трех и более материальных точек неизвестны. Поэтому большое значение приобретают общие теоремы динамики системы, позволяющие просто  [c.130]

При интегрировании дифференциальных уравнений движения в конкретных задачах эти уравнения подвергаются различным однотипным преобразованиям, зависящим от характера действующих сил. Поэтому целесообразно проделать такие преобразования в общем виде. Общие теоремы динамики точки и представляют собой преобразования дифференциальных уравнений движения, причем в различных теоремах выделены и связаны между собой те илн иные характеристики движений. В результате получаются удобные аа-висимости, широко используемые для решения конкретных задач динамики.  [c.289]


Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Наиболее общим приемом решения задач динамики материальной точки является применение дифференциальных уравнений движения точки в проекциях на орты различных систем координат.  [c.537]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]

Некоторые простейшие применения дифференциальных уравнений движения материальной точки. Методические указания к решению задач динамики  [c.323]

В этом параграфе мы рассмотрим простейшие задачи динамики точки, чтобы дать первые представления о методике применения дифференциальных уравнений движения. Поэтому в каждом случае будет обращено внимание на последовательность в ходе решения этих задач.  [c.323]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ СВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ ДВУХ ОСНОВНЫХ ЗАДАЧ ДИНАМИКИ ТОЧКИ  [c.448]

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДВИЖЕНИЯ СВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ К РЕШЕНИЮ ПЕРВОЙ ЗАДАЧИ ДИНАМИКИ ТОЧКИ  [c.452]

Общее уравнение динамики применяется для составления дифференциальных уравнений движения системы материальных точек с одной или несколькими степенями свободы. При использовании общего уравнения динамики для решения задач рекомендуется следующая последовательность действий  [c.288]

Исходя из своего общего уравнения динамики, Лагранж вывел дифференциальные уравнения движения в двух видах, соответствующих двум видам уравнений статики. Это знаменитые уравнения движения Лагранжа первого и второго рода. Уравнения движения второго рода замечательны тем, что для систем, при движении которых не изменяется их полная механическая энергия (консервативные системы), эти уравнения можно составить, зная общее выражение только двух величин кинетической энергии системы и ее потенциальной энергии. Число этих уравнений минимально, оно равно числу степеней свободы системы. Вместе с тем уравнения Лагранжа весьма общи их можно использовать для разных физических систем, если состояние таких систем характеризуется значениями их кинетической и потенциальной энергии. Кроме того, уравнения движения в форме Лагранжа второго рода имеют определенную структуру с математической точки зрения. Поэтому задача их решения (интегрирования) в общем виде является достаточно определенной, чтобы исследовать ее чисто математически. Знаменитый физик Максвелл имел все основания писать в своем Трактате об электричестве и магнетизме , касаясь значения Аналитической механики Лагранжа  [c.204]


Уравнения Лагранжа в обобщенных координатах применяют для решения задач динамики материальной точки с тремя степенями свободы в тех случаях, когда непосредственное составление дифференциальных уравнений движения затруднительно, например при применении сферических координат.  [c.544]

Методика изучения курса учитывает разницу в распределении учебных часов между лекциями и упражнениями. В связи с этим некоторые темы курса на упражнениях не рассматриваются, а целиком изучаются на лекциях с подробным решением необходимых задач. Например, в разделе Статика не выносится для изучения на занятиях тема Определение положения центра тяжести твердого тела в разделе Кинематика — темы Сферическое движение твердого тела , Сложное движение твердого тела в разделе Динамика — темы Колебательное движение материальной точки , Определение динамических реакций подшипников при вращении твердого тела относительно неподвижной оси , Составление дифференциальных уравнений движения системы материальных точек с помощью уравнений Лагранжа второго рода .  [c.12]

Дальше излагается кинетика. Вначале, как обычно, читается введение в динамику законы Ньютона, дифференциальные уравнения движения свободной материальной точки. Баллистическая задача рассматривается как пример решения второй основной задачи динамики свободной материальной точки.  [c.69]

Читателю, познакомившемуся с дифференциальными уравнениями движения свободной материальной точки, иногда начинает казаться, что вся динамика сводится к интегрированию дифференциальных уравнений движения в действительности же самым трудным и принципиально не всегда выполнимым является первый этап — исключение неизвестных реакций если его удалось выполнить, то мы считаем задачу динамики в принципе решенной, ибо теми или иными методами мы всегда можем проинтегрировать любую систему дифференциальных уравнений и получить решение с любой степенью точности.  [c.68]

Изложенный в предыдущей главе прием решения задач динамики в особенности удобно применяется в тех случаях, когда движение материальной точки задано и требуется определить силу или силы, под действием которых это движение происходит. К этой категории вопросов относились примеры, изложенные в предыдущем параграфе. Не менее важна обратная задача зная силы, действующие на материальную точку, определить ее движение. Общий прием для решения этой задачи состоит в интегрировании дифференциальных уравнений движения материальной точки.  [c.25]

Решение основной задачи динамики сводится к тому, чтобы из данных уравнений, зная силы, найти закон движения точки, т. е. X =/(/). Для этого надо проинтегрировать соответствующее дифференциальное уравнение. Чтобы яснее было, к чему сводится эта математическая задача, напомним, что входящие в правую часть уравнения (12) силы могут зависеть от времени t, от положения  [c.189]

Полное решение основной задачи динамики для системы будет состоять в том, чтобы, зная заданные силы и наложенные связи, проинтегрировать соответствующие дифференциальные уравнения и определить в результате закон движения каждой из точек системы и реакции связей. Сделать это аналитически удается лишь в отдельных случаях, когда число точек системы невелико, или же интегрируя уравнения численно с помощью ЭВМ.  [c.273]

Решение обратных задач динамики твердого тела, вращающегося вокруг неподвижной точки, представляет значительные трудности. Дифференциальные уравнения движения, т. е. динамические уравнения Эйлера, решаются в квадратурах только в исключительных случаях.  [c.542]

Решение второй задачи динамики сводится к интегрированию системы дифференциальных уравнений движения точки в координатной форме  [c.296]

Наиболее общим приемом составления дифференциальных уравнений движения материальной системы, подчиненной голономным связям, является применение уравнений Лагранжа. При наличии идеальных связей в эти уравнения не входят реакции связей. Если на материальную систему наложены голономные связи, то число уравнений Лагранжа равно числу степеней свободы. Применение этих уравнений особенно целесообразно при рассмотрении систем с несколькими степенями свободы. Так, в случае системы с двумя степенями свободы надо составить два дифференциальных уравнения движения. Если решать задачу, минуя уравнения Лагранжа, то необходимо из многих общих теорем и иных уравнений динамики найти два уравнения, применение которых наиболее целесообразно. Удачно выбрать уравнения и общие теоремы можно лишь на основе значительных навыков в решении задач или путем ряда неудачных проб и ошибок. Вместе с тем применение уравнений Лагранжа дает возможность быстро и безошибочно получить необходимые дифференциальные уравнения движения. Вообще говоря, при отсутствии ясного плана решения зад7чи лучше всего использовать уравнения Лагранжа. При этом существенную роль играет удачный выбор обобщенных координат.  [c.549]

Как уже известно, основной закон динамики для несвободной материальной ючки, а следовательно, и ее дифференциальные уравнения движения имеюг такой же вид, как и для свободной ючки, только к действующим на точку силам добавляю все силы реакций связей. Естественно, что в эгом случае движения точки могут возникнуть соответствующие особенности нри решениях первой и второй основных задач динамики, чак как силы реакций связей заранее не известны и их необходимо донолнигельно определить по заданным связям, наложе1П1ым на движущуюся материальную точку.  [c.256]


Вместо искусственного сочетания некоторых общих теорем и уравнений динамики, выбор которых представляет значительные трудности, указанные методы быстро и естественно приводят к составлению дифференциальных уравнений движения. Удачный выбор обобщенных координат обеспечивает простоту и изящество решения задачи. Удобно и то, что составленные дифференциальные уравнения движения не входят силы реакций идеальных св5Гзей, определение которых обычно связано с большими трудностями (силы реакций связей при движении системы являются функциями от времени, положения, скоростей и ускорений точек системы).  [c.544]

Блестящих результатов в самых различных отделах механики достиг гениальный ученый Николай Егорович Жуковский (1847—1921), основоположник авиационных наук экспериментальной аэродинамики, динамики самолета (устойчивость и управляемость), расчета самолета на прочность и т. д. Его работы обогатили теоретическую механику и очень многие разделы техники. Движение маятника теория волчка экспериментальное определение моментов инерции вычисление пла нетных орбит, теория кометных хвостов теория подпочвенных вод теория дифференциальных уравнений истечение жидкостей сколь жение ремня на шкивах качание морских судов на волнах океана движение полюсов Земли упругая ось турбины Лаваля ветряные мельницы механизм плоских рассевов, применяемых в мукомольном деле движение твердого тела, имеющего полости, наполненные жидкостью гидравлический таран трение между шипом и подшипником прочность велосипедного колеса колебания паровоза на рессорах строительная механика динамика автомобиля — все интересовало профессора Жуковского и находило блестящее разрешение в его работах. Колоссальная научная эрудиция, совершенство и виртуозность во владении математическими методами, умение пренебречь несущественным и выделить главное, исключительная быстрота в ре-щении конкретных задач и необычайная отзывчивость к людям, к их интересам — все это сделало Николая Егоровича тем центром, вокруг которого в течение 50 лет группировались русские инженеры. Разрешая различные теоретические вопросы механики, Жуковский являлся в то же время непревзойденным в деле применения теоретической механики к решению самых различных инженерных проблем.  [c.16]

Далеко не всегда действующие силы бывают известны. Обычно остаются неизвестными внутренние силы системы, приложенные к ее точкам, т. е. силы взаимодействия между точками этой системы (см. с. 167). Для вывода некоторых общих теорем динамики и при решении некоторых частных задач бывает удобным выделить внутренние силы уже при написании дифференциальных уравнений движения. Внешние силы обозначают F (от латинского слова exterior — внешний), а внутренние F (от латинского interior — внутренний).  [c.189]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Эти к уравнений представляют собой дифференциальные уравнения движения механической системы в обобщенных координатах, они впервые были получены Лагранжем в его Аналитической механике и потому называются уравнениями Лагранжа. Важно обратить внимание на то, что, во-первых, число уравнений Лагранжа равно числу независимых обобщенных координат данной системы, т. е. равно числу ее степеней свободы, и, во-вторых, что неизвестные реакции совершенных связей, наложенных на систему, в эти уравнения не входят. Уравнения Лагранжа представляют собой систему к дифференциальных уравнений второго порядка с к неизвестными функциями д ,. .., Если проинтегрируем эти уравнения, то найдем координаты механической системы 911 > 9йКак функции времени I, а потому будем знать положение этой системы в любой момент времени, и, следовательно, движение системы будет полностью определено. Таким образом, когда уравнения Лагранжа для данной механической системы составлены, то решение второй основной задачи динамики, т. е. определение движения системы под действием заданных сил, сводится к математической задаче интегрирования этих уравнений.  [c.555]

Решение. В общем случае прн действии сил, завпсящих от времени, скорости или координаты точки, вторую задачу динамики необходимо решать путем интегрирования дифференциальных уравнений движения. Метеор рассмотрим как свободную материальную точку, на которую действует только одни переменная сила — притяжение Земли  [c.173]

При решении первой основной задачи динамики действующая на точку равнодействующая сила определяется по заданному движению точки из дифференциальных уравнений ее движения. Затем из этой равнодействующей силы но заданным связям выделяю силу реакции связей. Таким образом получается задача о раздюжении известной силы на ее составляющие.  [c.255]



Смотреть страницы где упоминается термин Дифференциальные уравнения движения точки. Решение задач динамики точки : [c.46]    [c.50]    [c.255]    [c.473]    [c.539]    [c.69]    [c.142]    [c.29]    [c.225]    [c.256]   
Смотреть главы в:

Краткий курс теоретической механики  -> Дифференциальные уравнения движения точки. Решение задач динамики точки



ПОИСК



70 - Уравнение динамики

ДИНАМИКА Динамика точки

Движение дифференциальное

Динамика ее задачи

Динамика точки

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные уравнения движения и решение задач динамики точки

Дифференциальные уравнения движения и решение задач динамики точки

Дифференциальные уравнения движения материальной точки Мб Решение первой задачи динамики (определение сил по эаданнояу движению)

Дифференциальные уравнения движения несвободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения движения свободной материальной точки и их применение к решению двух основных задач динамики точки

Дифференциальные уравнения точки

Задача п тел уравнения движения

Задачи динамики

Некоторые простейшие применения дифференциальных уравнений движения материальной точки. Методические указания к решению задач динамики

Применение дифференциальных уравнений движения свободной материальной точки к решению второй задачи динамики точки

Применение дифференциальных уравнений движения свободной материальной точки к решению первой задачи динамики точки

Решение дифференциального уравнения

Решение задач динамики

Решения уравнения движения

Точка — Движение

Уравнение точки

Уравнения движения точки

Уравнения движения точки дифференциальные



© 2025 Mash-xxl.info Реклама на сайте