Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача динамики основная вторая

Динамика механизмов является разделом прикладной механики, в котором изучается движение механизмов с учетом действующих на них сил. В этом разделе устанавливаются общие зависимости между кинематическими параметрами механизма (его обобщенными координатами, скоростями и ускорениями), массами его звеньев и действующими на него силами, выражающиеся дифференциальными уравнениями. Пользуясь этими уравнениями, можно решать две основные задачи динамики механизмов. Первая задача сводится к тому, что по заданному аналитически или графически закону движения механизма требуется определить силы, действующие на механизм. Вторая задача заключается в том, что по заданным силам требуется определить закон движения механизма.  [c.52]


Задачи динамики. Для свободной материальной точки задачами динамики являются следующие 1) зная закон движения точки, определить действующую на нее силу (первая задача динамики ) 2) зная действующие на точку силы, определить закон движения точки (вторая, или основная, задача динамики).  [c.183]

Для несвободной материальной точки, т. е. точки, на которую наложена связь, вынуждающая ее двигаться по заданной поверхности или кривой, первая задача динамики обычно состоит в том, чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи. Вторая (основная) задача динамики при несвободном движении распадается на две и состоит в том, чтобы, зная действующие на точку активные силы, определить а) закон движения точки, б) реакцию наложенной связи.  [c.183]

Основная задача динамики в обобщенных координатах состоит в том, чтобы, зная обобщенные силы Qi, Qa, . и начальные условия, найти закон движения системы в виде (107), т. е. определить обобщенные координаты qu q ,. . как функции времени. Так как кинетическая энергия Т зависит от обобщенных скоростей qi, то при дифференцировании первых членов уравнений, (127) по t в левых частях этих уравнений появятся вторые производные по времени qi от искомых координат. Следовательно, уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщенных координат q  [c.378]

ВТОРАЯ ОСНОВНАЯ ЗАДАЧА ДИНАМИКИ ТОЧКИ  [c.244]

В каждой задаче, в которой рассматривается криволинейное или неравномерное движение точки, применяется вторая аксиома динамики — основной закон динамики точки  [c.284]

Материальная точка, движение которой в пространстве не ограничено наложенными связями, называется свободной. Примером свободной материальной точки может служить искусственный спутник Земли в околоземном пространстве или летящий самолет. Их перемещение в пространстве ничем не ограничено, и, в частности, поэтому летчик на спортивном самолете способен проделывать различные сложные фигуры высшего пилотажа. Для свободной материальной точки задачи динамики сводятся к двум основным 1) задается закон движения точки, требуется определить действующую на нее силу или систему сил (первая задача динамики) 2) задается система сил, действующая на точку, требуется определить закон движения (вторая задача динамики). Обе задачи динамики решаются с помощью основного закона динамики, записанного в форме (1.151) или (1.154).  [c.125]


Решение второй (основной) задачи динамики. Эта задача состоит в том, чтобы, зная действующую силу F, найти закон движения точки, т. е. кинематические уравнения (6). Сила F может вообще зависеть от времени, от положения точки в пространстве и от скорости ее движения ), т. е.  [c.321]

Если же решают вторую основную задачу динамики точки и задан вектор силы, но требуется определить радиус-вектор как функцию (54) от времени, то для решения задачи нужно интегрировать уравнение (125).  [c.261]

Из уравнений движения мы выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (58) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки л-, у и z как  [c.262]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]

Если решают первую основную задачу динамики точки и положение точки определено в векторной форме, т. е. дан радиус-вектор г как некоторая векторная функция времени 7 = 7 (/), то надо определить по (18 ) ускорение й, выражающееся второй производной от радиуса-вектора точки по времени /, и умножить его на массу точки т. Тогда получим следующее выражение основного закона динамики  [c.185]

При решении второй основной задачи динамики, когда по заданным силам и начальным условиям требуется определить движение несвободной точки, возникает та особенность, что часть сил, действующих на точку, а именно все силы реакций связей, заранее неизвестны и их необходимо определить по заданным связям в процессе решения задачи. Таким образом, вторую основную задачу динамики для несвободной материальной точки можно сформулировать так по заданным силам, начальным условиям и связям, наложенным на точку, определить движение этой точки и силы реакции связей.  [c.225]

Для выяснения особенностей решения второй основной задачи динамики, имеющей прикладное значение, рассмотрим ее решение как для случая прямолинейного, так и криволинейного движения материальной точки.  [c.234]

При решении второй основной задачи динамики, когда по заданным силам и начальным условиям требуется определить движение несвободной точки, часть сил, действующих на точку, а именно все силы реакций связей, заранее не известны и их необходимо определить по заданным связям в процессе решения задачи. Таким образом, вторую основную задачу динамики для несвободной материальной точки можно сформулировать так  [c.244]

Момент времени (о называется начальным моментом, а положение точки и ее скорость в этот момент времени — соответственно начальным положением и начальной скоростью. Вторая основная задача динамики состоит в том, что по этим данным требуется определить закон движения точки в пространстве.  [c.321]

Если будут определены постоянные интегрирования С , то вторые интегралы определяют закон движения точки. Рассматривая постановку второй основной задачи динамики, мы заметим, что, кроме сил, приложенных к точке, должны быть известны положение точки в начальный момент времени и ее начальная скорость Уо. Эти данные называются начальными условиями.  [c.322]


Вторая основная задача динамики (обратная) не может быть полностью решена посредством принципа Даламбера, так как основная ее трудность заключается в интегрировании дифференциальных уравнений движения. Принцип Даламбера в его применении к решению обратной задачи динамики можно рассматривать как особую методику составления дифференциальных уравнений движения. Эта методика иногда бывает полезной. Поэтому принцип Даламбера находит широкие применения в динамике сплошных сред (теории упругости, гидродинамике и т. д.).  [c.421]

Основным отличием методики решения задач при помощи уравнений Лагранжа второго рода от методики решения задач иными способами, основанными на применении теорем динамики, является единая общая последовательность отдельных этапов решения и исследования каждой задачи. Можно указать следующую последовательность решения задач динамики при помощи уравнений Лагранжа второго рода.  [c.135]

Рассмотрим на примере решение второй основной задачи динамики плоскопараллельного движения.  [c.410]

Из постановки этих двух основных задач динамики непосредственно следует, что из трех переменных, входящих в формулу (2) второго закона (масса, кинематика движения, сила), задаются только две масса и кинематические уравнения движения— в первой задаче динамики, масса и сила —во второй. Это говорит о том, что второй закон Ньютона, выраженный векторной формулой (2) или аналитически системой (7), не является тождеством (определением понятия силы), а представляет собой уравнение с неизвестным вектором силы F (первая задача динамики) или вектор-радиусом r t) (вторая задача динамики).  [c.20]

Вторая задача динамики сложнее уже хотя бы потому, что связана с необходимостью интегрирования основного дифферен-  [c.20]

В отличие от первой задачи динамики, решение которой позволяет найти закон силы по заданным конечным кинематическим уравнениям движения, целью второй задачи динамики является определение движения по заданному закону действия сил. Изложение методов решения этой задачи составляет, по существу, основное содержание всех разделов динамики.  [c.31]

ВТОРАЯ ОСНОВНАЯ ЗАДАЧА ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ  [c.217]

Решение второй задачи динамики для криволинейного движения свободной точки. Изложение методов решения второй задачи динамики составляет, по существу, основное содержание всех разделов динамики точки и динамики механической системы, в частности, твердого тела. Для материальной точки, как уже было сказано, эта задача состоит в том, чтобы по заданным силам, действующим на точку, массе точки и начальным условиям движения точки (начальному ее положению и начальной скорости) определить закон движения этой точки.  [c.456]

Основные преимущества уравнений Лагранжа второго рода (19) состоят в следующем. Во-первых, они дают единый и притом достаточно простой метод решения задач динамики для любых голономных систем точек или тел, как угодно движущихся. Во-вторых, число уравнений (19) не зависит от числа входящих в систему точек или тел и равно числу степеней свободы системы (в машинах, механизмах и приборах обычно одна, две и редко больше двух степеней свободы).  [c.792]

Вторая формула Бине позволяет определить силу для заданной траектории движения г = г(ц>), т. е. решить задачу, аналогичную первой основной задаче динамики точки.  [c.428]

Решение второй основной задачи динамики. Решить эту задачу— значит по известной силе Р найти закон движения точки, т. е. уравнения (11.4). Поскольку сила может зависеть, вообще говоря, от времени 1, положения точки в пространстве, определяемого координатами х, у, г, и скорости точки, проекции которой суть = = = - , решение второй задачи свс-  [c.137]

Следовательно, точное определение действительных перемещений, скоростей, ускорений и времени движения механизма требует рассмотрения второй основной задачи динамики — установления закона движения по заданным внешним силам и массам. Для решения этой задачи необходимо составить уравнение движения системы и решить его относительно неизвестного кинематического параметра. При определении закона движения механизма (машины) задача может быть упрощена, если массы всех подвижных звеньев, перемещающихся каждое по своему закону, заменить динамически эквивалентной расчетной массой звена приведения, к которому привести также все внешние силы и моменты сил.  [c.356]

При ренлении второй основной задачи динамики, когда по зада1пн,1М силам и начальным условиям требуется опре-дeJmть движение несвободной точки, часть сил, действующих на точку, а именно все силы реакций связей, заранее не известны и их необходимо определить по заданным связям  [c.255]

Как уже известно, основной закон динамики для несвободной материальной ючки, а следовательно, и ее дифференциальные уравнения движения имеюг такой же вид, как и для свободной ючки, только к действующим на точку силам добавляю все силы реакций связей. Естественно, что в эгом случае движения точки могут возникнуть соответствующие особенности нри решениях первой и второй основных задач динамики, чак как силы реакций связей заранее не известны и их необходимо донолнигельно определить по заданным связям, наложе1П1ым на движущуюся материальную точку.  [c.256]

Во второй основной задаче динамики точки задаются силы, приложенные к точке, положение точки в определенный момент времени и ее скорость VoBtot же момент времени. Иногда положение точки и ее скорость фиксируются в разные моменты времени.  [c.321]


Как видно из только что приведенных простейших примеров при решении второй, основной задачи динамики материальной точки приходится пользоваться как статическими законами сил (постоянная сила тяжести, упругая сила, сила тяготения), так и динамическими законами (сила сопротивления, лоренцева сила). Эти законы сил устанавливаются в результате решения частных задач и последующего обобщения этих решений на широкие классы явлений, моделирующих движения материальньк точек.  [c.38]

Вторая основная задача динамики точки. Зная действующие на материальную точку данной массы силы, начальное положение этой точки и ее начальную скорость, опреде у1ть закон движения точки.  [c.136]

С развитием гироприборостроения классические задачи динамики движения твердого тела около неподвижной точки отошли на второй план, уступив место задачам, выдвигаемым техникой гироприборостроения, развитие которых в основном относится к началу XX столетия.  [c.9]


Смотреть страницы где упоминается термин Задача динамики основная вторая : [c.247]    [c.255]    [c.264]    [c.320]    [c.261]    [c.114]    [c.245]   
Теоретическая механика (1990) -- [ c.74 ]

Теоретическая механика (1999) -- [ c.89 ]



ПОИСК



Вторая основная задача

Вторая основная задача динамики материальной точки

Вторая основная задача динамики точки

Две основные задачи динамики

Динамика ее задачи

Динамика, основная задача

Задача баллистическая динамики основная вторая

Задача динамики вторая

Задача основная

Задачи динамики

Основная задача динамики

Основные Динамика

Основные задачи



© 2025 Mash-xxl.info Реклама на сайте