Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи краевые в плоской задаче теории

Задачи краевые в плоской задаче теории упругости для функций комплексного переменного 500  [c.563]

Эти методы можно разделить па две группы. Первая составляет методы приближенного решения краевых задач для дифференциальных уравнений, к которым сводятся те или иные задачи прикладной теории упругости. Из числа этих методов прежде всего рассмотрим метод конечных разностей (МКР) и особенности его применения в плоской задаче и в задачах изгиба пластин. Далее излагаются метод Бубнова — Галеркина и метод Канторовича — Власова.  [c.228]


Функция % z) входит лишь в выражение момента т ее знание чаще всего излишне. Поэтому часто оказывается ненужным и разыскание функции напряжений напряженное состояние и перемещения в плоской задаче целиком определяются двумя функциями комплексного переменного ф(г), о] (г) и их производными. Систематическое применение этих функций к решению краевых задач плоской теории упругости принадлежит  [c.480]

В плоской задаче теории упругости, решаемой методом теории функций комплексной переменной, проблема состоит в отыскании двух голоморфных функций /(г) и х( ) [62], комбинация которых принимает заданное значение на границе области (контуре Г). Если рассматривается первая краевая задача, т.е. на границе заданы компоненты вектора перемещения и и t), то эта комбинация имеет вид  [c.252]

В смешанных задачах теории упругости, где имеются линии и точки раздела граничных условий, нельзя рассчитывать на существование гладких решений даже при весьма гладких исходных данных задачи. Возможно поэтому методы теории потенциала использовались здесь значительно реже. В плоской задаче эффективным средством анализа смешанных трехмерных краевых задач оказались методы теории функций комплексного переменного [176, 177, 208, 226, 227, 377]. Более приспособленными для исследования существенно смешанных задач оказались функциональные методы. Они дают возможность вначале доказать разрешимость основных задач в классе слабых решений, а затем установить степень гладкости решения в зависимости от исходных данных и внутренней структуры решения.  [c.88]

Из (1.3) следует возможность приведения задачи изгиба к краевым задачам теории функций комплексного переменного, как это сделано в плоской задаче теории упругости.  [c.93]

Основная идея изложенного в гл. 10 метода комплексной переменной для решения плоской задачи теории упругости состояла в том, чтобы представить искомые напряжения и перемещения через функции комплексной переменной, т. е. по существу через гармонические функции действительных переменных Ха.. Для этих функций формулируются те или иные краевые задачи, методы решения которых и составляют содержание соответствующего раздела теории упругости. Большая часть эффективных методов решения пространственных задач теории упругости представляет собою развитие той же идеи. Здесь мы приведем и будем в дальнейшем использовать одно такое представление решения задачи теории упругости через четыре гармонические функции. Это представление было открыто Папковичем в 1932 г. и независимо Нейбером в 1933 г. Будем отправляться от уравнений Ламе при отсутствии объемных сил  [c.359]


Винтовая дислокация, рассмотренная в 9.2, и краевая дислокация, построенная в 10.3 как пример решения некоторой плоской задачи теории упругости путем представления решения через функции комплексной переменной, служат примерами дислокаций, для которых линия дислокации — прямая. Те же результаты могут быть получены и путем применения общих формул 14.3 это и будет сделано в настоящем параграфе.  [c.461]

В настоящей книге применение комплексного переменного к плоской задаче ограничено примерами решения наиболее простых краевых задач (первой и второй). Смешанные краевые задачи, решение которых требует применения средств теории линейного сопряжения и сингулярных интегральных уравнений, полно представлены в последних изданиях книги [2], а также в [149, 150] в книге [148] основное место уделено применению интегральных уравнений.  [c.923]

Из решения краевых задач А, В и С решения соответствующих статических и стационарных динамических задач плоской теории упругости получаются как некоторые предельные случаи. Укажем соответствующие предельные переходы.  [c.117]

Расчеты, основанные на методах конечных элементов для зоны краевого эффекта, описывают конечный рост межслойных напряжений, который обнаружен в первоначальной формулировке с использованием плоской задачи теории упругости [24, 251, а также моделируют распределение пространственных компонент тензора напряжений в окрестности отверстия небольшого диаметра в толстой пластине при растяжении ). Однако эти элементы не являются полностью согласованными с моделью однородных слоев, лежащей в их основе, поскольку разрыв в величинах упругих постоянных в такой модели привел бы к неограниченному росту в точках пересечения свободной боковой границы с меж-слойной поверхностью. Такая сингулярность в принципе должна быть учтена в гипотезах о поведении напряжений, но это пока не сделано.  [c.421]

Основные успехи в рассмотрении упруго пластических плоских задач для тел с отверстиями (см. также гл. II) связаны с полным охватом отверстия пластической зоной. В зтом случае соответствующая математическая задача для идеального пластического тела весьма часто может быть сведена к некоторой краевой задаче для бигармонического уравнения в области, границы которой не известны заранее и должны быть определены в процессе решения из дополнительного краевого условия. В таких проблемах весьма полезными оказываются основные соотношения плоской теории упругости, полученные Г.В. Колосовым и Н.И. Мусхелишвили  [c.7]

В данном параграфе с помощью аппроксимации ядра интегрального уравнения получено замкнутое приближенное решение плоской задачи теории упругости для полуплоскости с внутренним разрезом, перпендикулярным к краю области. Предельным переходом найдены решения задач для краевого и полубесконечного разрезов. Сравнение с известными точными решениями для некоторых нагрузок показывает высокую точность полученных результатов.  [c.116]

Поставленные задачи в некотором смысле аналогичны основным краевым задачам для плоских установившихся потенциальных течений в криволинейных каналах ([9]). Если для установившегося течения скорость звука можно найти из уравнения Бернулли, то в данном случае вместо уравнения Бернулли приходится рассматривать нелинейное уравнение второго порядка для скорости звука ui U2) в плоскости годографа, известное из теории двойных волн (см. [3, 4]), и для этого уравнения необходимо решать граничные задачи типа задачи Гурса или смешанной задачи.  [c.64]

В этой главе излагается общий подход к решению проблемы особых точек, основанный на понятии корректной краевой задачи и теореме об однородных решениях Р ]. В сочетании с простейшими инвариантно-групповыми соображениями предлагаемый подход позволил достаточно полно изучить наиболее интересные случаи в плоской статической задаче теории упругости, а также случай цилиндрической точки.  [c.52]


Показано, что для плоских задач теории упругости все множество сингулярных упругих задач с бесконечно удаленной точкой можно разбить на два эквивалентные по мощности ) класса класс S, для которого выполняется принцип Сен-Ве-нака, и класс N, для которого принцип Сен-Венана несправедлив. Например, к классу N принадлежит упругая задача для тела с бесконечно удаленной точкой типа клина с углом раствора, большим я. Для постановки корректной краевой задачи в классе /V оказывается необходимым ввести дополнительное условие на бесконечности. В качестве иллюстрации рассмотрены решения некоторых конкретных задач. Показано, например, что известные решения задач о действии сосредоточенной силы и момента в вершине бесконечного клина некорректны при угле раствора, большем я.  [c.52]

ГОСТИ И механика разрушения. В гл. 1 содержится обзор этих методов в контексте общих краевых задач, которые могут относиться к любой из названных областей или к ним всем. Остальные главы посвящены методам граничных элементов в механике твердого тела. В гл. 2 дается обзор сведений из теории упругости, которые затем постоянно используются в остальной части книги. В гл. 3 вводится решение Фламана для линии сосредоточенных сил, действующих на границе полуплоскости, и для этого случая разрабатывается простой метод граничных элементов. Цель состоит в том, чтобы показать, как математическое решение элементарной задачи может быть преобразовано в вычислительную технику для решения более сложных проблем. В гл. 4 и 5 построены два непрямых метода граничных элементов для плоских задач. Идея прямых методов (эта терминология разъясняется в гл. 1) развивается в гл. 6 с помощью скорее физических, чем математических соображений. В гл. 7 иллюстрируются некоторые обобщения методов граничных элементов и технические приемы, позволяющие увеличить точность решения. Некоторые из этих приемов общие, а другие специально созданы для определенных классов задач. Особое внимание уделяется тому, как для решения этих задач строятся вычислительные программы. И наконец, в гл. 8 даны примеры приложений методов граничных элементов в горной геомеханике и инженерной геологии. Эти примеры подобраны таким образом, чтобы проиллюстрировать ту помощь, которую оказывает метод граничных элементов, облегчая понимание физических процессов.  [c.8]

Методы граничных элементов, рассмотренные в предыдущих двух главах, предназначены для решения общих краевых задач теории упругости в плоской постановке. Как известно, такие задачи характеризуются плоской областью R, ограниченной контуром С. Область R может быть либо конечной (область внутри контура С), либо бесконечной (область вне контура С), как показано на рис. 6.1. В любом случае, с каждой точкой Q контура С мы связываем касательные и нормальные смещения и м и касательные и нормальные напряжения (или усилия) (Т и (Т . Эти величины задаются, как обычно, относительно локальной системы координат S, п точки Q  [c.111]

Как показано в [65], подход, основанный на применении интегралов типа Коши, может быть использован также при решении краевых задач линеаризованной плоской теории упругости для многосвязных областей. Для таких задач может быть применен метод, известный в литературе [41, 63, 65, 135] как метод последовательных приближений Шварца. Этот метод представляет собой итерационный процесс, на каждом шаге которого решается граничная задача для односвязной области, ограниченной одним из контуров, составляющих границу Г данной многосвязной области, причем от шага к шагу номер контура меняется. В более общем виде (без привязки к методу Колосова-Мусхелишвили) метод Шварца рассмотрен в приложении IV. Сходимость этого метода для плоских задач теории упругости доказана [85.  [c.80]

В большинстве публикаций, посвященных решению прикладных контактных задач, используется двумерная постановка краевой задачи, в которой НДС объектов определяется соотношениями осесимметричной либо плоской задачи теории упругости. Это обстоятельство в основном объясняется двумя причинами сложностью анализа контактных явлений в трехмерной постановке и недостаточной мощностью вычислительных средств для удовлетворительного описания в пространстве геометрии взаимодействующих тел.  [c.15]

В данной главе изложен алгоритм [95, 102] расчета статической траектории распространения исходной внутренней трещины, базирующийся на решении плоской задачи теории упругости для тел с криволинейными разрезами. Приложенная к телу нагрузка и форма исходной трещины удовлетворяют некоторым условиям симметрии, так что оба ее конца развиваются одинаково. В этом случае траектория может быть построена без учета зависимости скорости роста трещины от коэффициента интенсивности напряжений в ее вершине. Аналогично может быть рассмотрено распространение краевой или полубесконечной трещины при действии любой несимметричной нагрузки. Изучены случаи развития исходной прямолинейной или двух сдвинутых параллельных трещин в бесконечной плоскости при действии растягивающих усилий на бесконечности или растягивающих сосредоточенных сил. Задачи на каждом этапе сводятся к сингулярному интегральному уравнению для гладких контуров, численное решение которого находится методом механических квадратур.  [c.41]

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]


Используем изложенный в параграфе 2 подход к численному решению сингулярных интегральных уравнений плоской задачи теории трещин при наличии полос пластичности для исследования кругового кольца с краевыми трещинами.  [c.228]

Часть публикаций посвящена решению конкретных краевых задач. Абдусаттаров [1] на основе деформационной теории пластичности предложил постановку и способ решения плоской задачи о больших деформациях упругопластического цилиндра при повторном нагружении внутренним давлением. Переменное деформирование круглого стержня рассмотрено в работе [160.  [c.90]

Приведенный выше метод решения плоской задачи теории упругости и изгиба плоских плит разработан с учетом технических возможностей интегратора ЭМ (БУ)-6. Почти все задачи решаются по частям путем расчленения их на составляющие задачи. В число последних входит неопределенная краевая задача, представляющая собой совместное решение уравнения = Р у Р = О, удовлетворяющее двум заданным условиям для функции да. Метод решения такой задачи, включающий подбор неизвестных краевых условий для гармонической функции Р, был практически проверен в НИС Гидропроекта при получении численных данных для большого числа задач, включающих решение неопределенной краевой задачи. Как показывает опыт, подбор краевых условий гармонической функции по критерию, который можно замерить в процессе подбора непосредственно на сетках интегратора, не представляет больших трудностей и обеспечивает большую точность выполнения заданных краевых условий. Однако выполнение операции подбора на интеграторе ЭМ (БУ)-6 при выполнении граничных условий с точностью 332  [c.332]

Краевые задачи связаны со значительным разнообразием контуров. Это приводит к необходимости при их решении использовать конформное отображение. Для решения подобных задач Г. В. Колосовым и И. И. Мусхелишвили разработан, Г. И. Савиным развит мощный аппарат с использованием потенциалов Колосова—Мусхелишвили, Однако, как отмечает Л. И. Седов [38], использование конформных отображений в плоской задаче теории упругости отлично от такового в задачах гидродинамики. Это происходит потому, что бигармонические функции при конформном отображении перестают удовлетворять бигармоническому уравнению. Но, поскольку природа процессов одна, естественно продолжить поиски решения задач плоской теории упругости как задач Дирихле.  [c.10]

Имеется еще одно важное обстоятельство, которым пластины существенно отличаются от балок. В пластинах при действии краевых нагрузок, лежащих в срединной плоскости, можно получить мембранные силы, аналогичные тем, которые, имеют место в плоских задачах теории упругости, так -же как и в случае осевых нагрузок, приложенных к балкам. Но в балках мембранные силы могут вызвать поперечные перемещения только в том случае, когда опирание балки таково, что оно препятствует осевым смещениям, как в случае, обсужденном "в 2.6. G другой стороны, мембранные силы в общем случае вызывают поцереч-ное перемещение пластин независимо от того, имеются ли такие связи или они о сутствуют. Это объясняется тем, что перемещения в плоскости пластины в общем случае не могут происходить беспрепятственно, как при осевом перемещении свободно опертой балки,— различные части пластины стремятся перемещаться на различные расстояния, поэтому такие перемещения влияют друг на друга. Например, рассмотрим круговую пластину при действии поперечной нагрузки диаметральные элементы пластины (рис. 4.2, а) искривляются и х концы стремятся сблизиться (рис. 4.2, б). Даже в том случае,, если радиальному перемещению не препятствуют граничные опоры, оно огра-  [c.211]

Как будет показано в дальнейшем, например в случае плоской задачи теории упругости и задачи изгиба пластин, аппарат конформных отображений является менее эффективным. Дело в том, что бигармоническое уравнение, к которому сводятся эти задачи, уже не является инвариантным относительно конформного отображения и при замене переменных происходит существенное усложнение структуры уравнения. Однако в этом случае удается получить эффективные решения, когда отображающая функция имеет вид полинома или дробно-рациональной функции. Это связано со следующим свойством интеграла типа Кощи, взятого по окружности (аналогично рассматривается и случай полуплоскости). Пусть /(т) — функция, заданная на некотором контуре и являющаяся краевым значением аналитиче-  [c.31]

Остановимся еще на одном, казалось бы парадоксальном, примере. Из решения плоской задачи теории упругости для бесконечной области (безразлично — бесконечной или полубеско-нечной) будет следовать, что при неравенстве нулю главного вектора внешних сил перемещения оказываются бесконечными. В этом нет ничего удивительного, поскольку при рассмотрении плоской задачи (допустим, в случае плоской деформации) с позиций пространственной задачи оказывается, что суммарное усилие обращается в бесконечность. Следует заметить, что переходы к бесконечному телу при решении задачи в напряжениях и перемещениях не эквивалентны друг другу. Если в напряжениях переход и возможен, то в смещениях он может и быть ошибочен, что и подтверждается приведенным примером. Для устранения же бесконечных смещений можно предложить, например, такой спосЪб. После того как решение в деформациях определено достаточно точно из решения для бесконечного тела, находят по ним смещения в истинном теле, исходя из его фактических размеров и краевых условий. Разумеется, строгое обоснование предлагаемого подхода затруднительно для общего случая, но в частных задачах, по-видимому, оно может быть достигнуто.  [c.304]

Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]


В практических расчетах элементов конструкций на прочность и устойчивость широко применяются так называемые прикладные теории оболочек. При их создании обычно принимают дополнительные упрощения, которые позволяют получить простые аналитические решения задач. Однако эти теории могут быть использованы для расчета только определенного класса конструкций. Например, рассмотренная в этой главе теория краевого эффекта применяется для определения напряжений лишь на узких участках оболочек, близких к цилиндрическим. Теория пологих оболочек используется при расчете элементов, геометрия которых мало отличается от плоских пластин. С помощью полубезмомент-ной теории удается получить простые формулы для расчета тонкостенного цилиндра, когда изменяемость деформированного состояния по окружности существенно выше, чем вдоль образующей. Теория мягких оболочек применяется при расчете конструкций весьма малой толщины, в тех случаях когда можно не учитывать изгибающие моменты.  [c.146]

Следующее, очень важное заключение, которое мбжно сделать из рассмотрения уравнения (4.13), состоит в том, что так как относящееся к мембранным напряжениям частное решение фр связано с поперечным перемещением w через квадраты или попарные произведения соответствующих производных от функции W, эта часть мембранных напряжений демонстрирует влияние больших прогибов или конечных перемещений, которое незначительно, когда прогиб W мал, и становится заметным только при больших. прогибах w насколько при этом велик должен быть прогиб ш, трудно определить из простых соображений, но опыт указывает, что, как и в соответствующем случае балок, рассмотренном в 2.6, эта часть частного решения, описывающего мембранные напряжения, становится существенной только тогда, когда прогиб w становится соизмеримым с толщиной. Следовательно, при u <0,2ft такими мембранными напряжениями можно пренебречь, положив правую часть уравнения (4.13) равной нулю. В подобном случае могут возникать еще и мембранные напряжения, соответствующие плоской задаче теории упругости и вызываемые действующими в плоскости пластины краевыми нагрузками, но это плоское напряженное состояние не будет зависеть от поперечных нагрузок и вызываемых ими прогибов. Таким образом, когда прогиб w мал, два вида нагруженных состояний пластины — мембранное и изгибное, обусловленное поперечным нагружением,— могут исследоваться но отдельности, а затем суммироваться.  [c.228]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]

Успехи в области исследования плоской задачи теории упругости тесно связаны с применением теории функций комплексного переменного. Такая возможность вытекает из того обстоятельства, что плоская задача теории упругости сводится к краевым задачам для бигармопического уравнения.  [c.252]

Среди приближенных методов решения задач математической физики особую роль играет теория возмуш,ений, позволяющая построить асимптотические разложения при малых и больших значениях тех или иных характерных параметров. Применению такого подхода к контактным задачам теории упругости для изотропной полосы и изотропного слоя был посвящен специальный параграф в монографии [7]. При этом в качестве малых и больших параметров принимались, как правило, относительные геометрические размеры штампа (отношение ширины штампа к ширине полосы (слоя) или обратная величина). Между тем, в случае анизотропного и, в частности, ортотропного материала появляется еще одна возможность. Обычно некоторые жесткости композитов, моделируемых анизотропными однородными средами, отличаются по порядку величины, и, следовательно, их отношения могут рассматриваться как малые параметры. В последние десятилетия был развит асимптотический метод, основанный на построении разложения по таким параметрам. Этот метод отражен, помимо статей [1, 3, 5], в монографиях [4] и [6]. Первое его применение к контактным задачам содержится в статье Л. И. Маневича и А. В. Павленко [5], где рассмотрено вдавливание в упругую ортотропную полосу жестких штампов при наличии сил трения. В этой работе было показано, что использование малого параметра, характеризующего отношение жесткостей ортотропной среды, позволяет свести смешанную краевую задачу плоской теории упругости к последовательно решаемым задачам теории потенциала. Статья С. Г. Коблика и Л. И. Маневича [3] посвящена контактной задаче для ортотропной полосы при наличии области контакта зон сцепления и скольжения. В этой сложной задаче предложенный метод оказался особенно эффективным бьши получены явные аналитические выражения для нормальных и касательных напряжений в обеих областях, а также для заранее неизвестной границы между этими областями. В работе Н. И. Воробьевой,  [c.55]



Смотреть страницы где упоминается термин Задачи краевые в плоской задаче теории : [c.201]    [c.449]    [c.471]    [c.421]    [c.462]    [c.502]    [c.164]    [c.302]    [c.305]    [c.286]    [c.207]    [c.681]    [c.240]   
Механика сплошной среды. Т.2 (1970) -- [ c.0 ]



ПОИСК



I краевые

Задача краевая

Задачи краевые в плоской задаче теории переменного

Задачи краевые в плоской задаче теории упругости для функций комплексного

Краевые задачи плоской теории улругости

Плоская задача

Теории Задача плоская



© 2025 Mash-xxl.info Реклама на сайте