Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы мембранные

Сжатие нижней коробки происходит до тех пор, пока силы, вызванные перепадом давлений, не уравновесятся упругими силами мембранных коробок. Если же перепад давлений превысит расчетный, то разрушения коробки не произойдет, так как обе мембраны сложатся по профилю, вытеснив всю воду в верхнюю коробку. Точно так же мембранным коробкам не страшны любые односторонние перегрузки.  [c.78]


Сила мембранного пневматического устройства одностороннего действия  [c.301]

Плюсовое (большее) давление создается в нижней камере 5, минусовое (меньшее) в верхней камере 7. С центром верхней мембраны соединен сердечник 6 индукционной катушки для передачи показаний на расстояние. Под действием разности давлений в плюсовой и минусовой камерах нижняя мембранная коробка 2 сжимается, жидкость из нее перетекает в верхнюю коробку 4, вызывая перемещение центра верхней диафрагмы, с которой связан сердечник. Деформация мембран происходит до тех пор, пока силы, вызванные перепадом давления, уравновесятся упругими силами мембранных коробок.  [c.190]

Редуктор для газопламенной обработки—прибор для понижения давления газа, при котором он находится в баллоне или магистрали, до величины рабочего давления и для автоматического поддержания этого давления постоянным. Редуктор имеет клапан, управляемый гибкой мембраной, на которую с одной стороны действует сила пружины, а с другой — давление газа. Регулированием силы пружины обеспечивается заданное давление и расход газа.  [c.97]

Уравнения (15.4), (15.5) определяют и равновесную форму граничной поверхности между фазами, т. е. форму поверхности, при которой реализуется минимум соответствующего термодинамического потенциала системы. Действительно, если мембрана гибкая и на нее действуют только силы, учтенные в (15.3), то разность давлений на мембране должна быть одинаковой в любой точке ее поверхности, так как в каждой из фаз давления изотропны (гидростатические давления), т. е.  [c.138]

Для обратного преобразования электрических колебаний в звуковые применяется громкоговоритель. В громкоговорителе катушка 1 (рис. 199) из медного провода соединена с гибкой мембраной 2 и коническим диффузором 3. Катушка находится в магнитном поле постоянного магнита 4. При протекании переменного тока катушка под действием переменной силы Ампера колеблется с частотой колебаний силы тока. Катушка заставляет колебаться с такой же частотой мембрану и диффузор. Эти коле-  [c.193]

Мембранные силы, обозначенные верхним индексом нуль , являются силами в основном безмоментном состоянии равновесия, возникшим до критического состояния. Эти силы определяют из безмоментного состояния с точностью до одного параметра — интенсивности внешней нагрузки.  [c.259]


Мембранные силы, обозначенные верхним индексом нуль , являются силами в основном безмоментном состоянии равновесия, которое предшествует критическому состоянию.  [c.262]

Более сложным примером связанных колебаний являются колебания мембран, представляющих собой тонкие упругие пластинки или пленки. Колебания каждой точки мембраны кроме размеров, массы и силы натяжения мембраны зависят также от положения точки на мембране, т. е. от двух координат. Поэтому нормальным колебаниям мембраны соответствуют уже ие отдельные узловые точки, а узловые линии, которые ирн данном колебании остаются  [c.198]

Приборы, приведенные на рис. 9.4, а, б, используются в качестве манометров избыточного давления и вакуумметров. Приборы с чувствительным элементом в виде мембранной коробки или сильфона могут, кроме того, применяться в качестве дифманометров и манометров абсолютного давления (в том числе и барометров). В первом случае коробку или сильфон помещают в герметичную камеру со штуцером, давления р и р подводятся к штуцерам мембранной коробки или сильфона и камеры. В барометре (рис. 9.5) мембранная коробка 1 или сильфон герметично запаяны, одно из их доньев крепится к корпусу 3, а ко второму присоединяется передаточный механизм 5, связанный со стрелкой 4. Для разгрузки мембраны или сильфона служит пружина 2, создающая противодействующую силу.  [c.136]

Первые члены правых частей этих формул определяют напряжения от мембранных сил  [c.392]

Если моменты равны нулю, то эпюры напряжений постоянны по толщине пластины, если же равны нулю мембранные силы, то  [c.393]

Подачу насоса регулируют изменением угла у путем поворота обоймы, а вместе с ней и наклонного диска. Поворот обоймы осуществляется тягой при подаче жидкости из напорного трубопровода под поршень 8 вследствие увеличения давления выше установленного за счет уменьшения расхода в напорном трубопроводе. Одновременно жидкость из напорного трубопровода поступает к мембране 13, через которую воздействует на клапан //, обеспечивая свободный выпуск жидкости из полости пружины 9 через открывшийся клапан II. При этом тяга вместе с поршнем 8 пойдет вправо, уменьшая угол у, а следовательно, и подачу Q. После того как подача уменьшится до заданной величины, движение поршня 8 прекратится за счет выравнивания сил, действующих на него слева и со стороны пружины 9. В полости пружины 9 с помощью жиклера 10 и клапана 11 поддерживается давление ниже, чем в напорном трубопроводе, вследствие гидравлических потерь при непрерывном движении жидкости из напорной камеры через жиклер в полость пружины 9 и далее через клапан II на слив в приемный резервуар насоса. При изменении давления в напорной камере в результате изменения расхода в системе подача насоса автоматически изменится за счет того, что поршень 8 займет другое положение в своем цилиндре.  [c.339]

Определение силы давления жидкости, действующей на ту или иную поверхность, имеет большое практическое значение при механических расчетах стенок, заглушек, перегородок, мембран и других устройств.  [c.44]

Вал агрегата состоит из вала 14 турбины и вала 13 генератора. Толщина стенки вала бц = 0,28с в- Применен подшипник 15 турбины с масляной охлаждающей смазкой и самоустанавливающимися сегментами. Для предохранения подшипника от попадания воды из полости над рабочим колесом на фланце вала установлены двойные торцовые мембранные уплотнения 10, к которым для промывки подводится чистая вода, а ниже них — ремонтные уплотнения 9. В отверстии на нижнем торце вала установлен шаровой поплавковый клапан 11, который пропускает воздух в зону турбины при понижениях давления за рабочим колесом, когда атмосферное давление преодолевает силу пружины, подпирающей шар 12. Недостатком этой конструкции является невозможность управления впуском воздуха.  [c.39]

Сила, передаваемая мембранным пневматическим двигателем (рис. 21.4, б), определяется по равенству  [c.375]

Воздействуя на композит с переменной укладкой слоев по толщине произвольной системой сил в плоскости и переменной температурой, можно ожидать одновременно деформирования этого композита в срединной плоскости и появления кривизны [38]. Слоистые композиты, у которы.х все термоупругие свойства симметричны относительно срединной плоскости, представляют особый класс композитов. У таких материалов нагружение в срединной плоскости и симметричное по толщине поле температур могут вызвать только деформации в плоскости (мембранные). Действие н<е результирующих моментов п антисимметричного поля температур может привести только к деформациям изгиба без растяжения — сжатия в срединной плоскости. Справедливо также и обратное.  [c.255]


Рассмотрим идеальную мембрану, т. е. пленку бесконечно малого веса и бесконечно малого сопротивления изгибу, натянутую с равномерным натяжением на краях на некоторый замкнутый контур (рис. 35). Мембрана растягивается под действием постоянного избыточного давления р, которому подвержена одна из ее поверхностей. Мембрана уравновешивается благодаря равенству внешних растягивающих равномерно распределенных сил и сил натяжения внутри мембраны на границе S. Составим дифференциальное уравнение поверхности мембраны z х, у), используя для этого уравнения статического равновесия некоторого бесконечно малого элемента поверхности мембраны со сторонами dx и dy.  [c.79]

Движущей силой мембранного процесса разделения могут быть градиенты давления, концентрации или электрического потенциала. Ниже рассматриваются только процессы, осуществляемые под действием разности давлений - баромембранные процессы.  [c.562]

Зная координаты и импульсы частиц, мы можем вычислить значение любой механической величины, имеющей смысл для данного микросостояния. Разделив, например, квадрат импульса частицы на ее удвоенную массу, мы получим величину ее кинетической энергии. Просуммировав зависящие от положения частиц силы их взаимодействия с мембраной манометра и отнеся полученную силу к единице площади, найдем величину давления. Мы можем найти полную энергию какой-то группы частиц, сложив их кинетические энергии с потенциальной энергией их взаимодействия, определяемой их взаимным расположением Пересчитав частицы, находяпщеся в небольшом объеме в окрестности интересзчощей нас точки, определим плотность числа частиц в этой точке. И так далее.  [c.15]

Стандартизация упругих элементов (пружин, мембран и др.) предусматривает обеспечение взаимозаменяемости как по присоединительным размерам, так и по характеристике, выражаюш,ей зависимость перемещения (деформации) торца пружины или рабочего центра другого элемента от приложенной силы. Оптимальное значение параметров и стабильность характеристики упругих элементов определяются точностью их размеров и формы, механическими свойствами материалов, а также конструктивными и технологическими факторами. Упругие элементы должны иметь мппимальное упругое последействие (т. е. минимальную остаточную обратимую деформацшо, исчезающую в течение некоторого времени после снятия нагрузки) и наименьшую петлю гистерезиса (несовпадение характеристик при нагружении и разгружении, определяемое максимальной разностью между деформациями при нагружении и разгружении упругого элемента). Для определения влияния геометрических, механических и других параметров на работу упругих 76  [c.76]

В рассмотренной системе воображаемой мембраной являлась естественная граница фаз, плоская, подвижная и проницаемая для некоторых из компонентов. Никакие ограничения на сосуществующие фазы не вводились, и, как показывают соотношения (14.13) — (14.15), при равновесии наблюдается термическое, механическое и химические равновесия. Если, одпако, мембраной служит реальная перегородка, неподвижная и жесткая, то любые изменения объемов фаз в изолированной системе становятся невозможными, т. е. в (14.8) б= бР = 0. Это условие аналогично, как легко видеть, условию для неподвижных ком-попеитов (14.10). Механическое равновесие фаз может в этом случае -отсутствовать, а для термического и химических равновесий останутся в силе прежние выводы. Разность давлений (ра рр) в такой системе называют осмотическим давлением, для ее нахождения надо использовать какие-либо дополнитель-  [c.133]

Поскольку мембран, обладающих строго униполярной проводимостью, не существует, любой электрохимический элемент имеет в действительности некоторый ток самозаряда, что необходимо учитывать при его использовании для измерения термодинамических величин измеренное напряжение может оказаться меньше электродвижущей силы элемента (последняя считается положительной, если фаза б заряжена положительно относительно фазы у).  [c.153]

Упомянем коротко об особом случае деформаций тонких пластинок — о так называемых мембранах. Мембраной называют тонкую пластинку, подвергнутую сильному растяжению приложенными к ее краям внешними растягивающими силами. В таком случае можно пренебречь дополнительными продольными натяжениями, возникающими при изгибе пластинки, и соответственно этому можно считать, что компоненты тензбра равны просто постоянным внешним растягивающим напряжениям. В уравнении (14,4) можно теперь пренебречь первым членом по сравнению со вторым, и мы получаем уравнение равновесия  [c.79]

Полученное уравнение (7.122) только последним членом правой части отличается от первого уравнения Доннела (7.113) если в нем мембранные силы принять по формулам (7.121).  [c.260]

Для измерения давления в жидкости или газе мы должны измерить силу, с которой действует на определенную площадку жидкость или газ, прилегающие к этой площадке с одной стороны. Простейшим образом эта задача осуществляется в мембранных манометрах и барометрах-анероидах. В жидкость или газ помещается герметически закрытая коробка ), одна из сте1юк которой может заметно деформироваться под действием измеряемых сил. По величине этой деформации, отсчитываемой при помощи стрелки и шкалы, определяется давление  [c.501]

Применение рупора позволяет также повысить мощность, отдаваемую мембраной (увеличить акустическую отдачу мембраны). Средняя мощность, излучаемая мембраной при данных ее размерах и амплитуде колебаний, может быть увеличена за счет увеличения давления в звуковой иолР1е, создаваемой мембраной (так как отдача мощности обусловлена работой мембраны против силы давления, действующей на нее со стороны звуковой волны). Если поместить мембрану в камеру с отверстием, размеры которого меньше размеров мембраны, то переменное давление, создаваемое в камере колеблющейся мембраной, будет выше, чем в отсутствие камеры, и мощность, излучаемая мембраной через отверстие в камере, будет выше. Однако это достигается за счет уменьшения поперечных размеров куска плоской волны с вытекающими отсюда вредными последствиями — ухудшением направленности. Но применение рупора с узким горлом позволяет устранить эти последствия. Поэтому в громкоговорителях обычно применяют предрупорные камеры и горло рупора делают меньших размеров, чем мембрана (рис. 472).  [c.742]


В манометрах типа ММ-Э, МНДМ-Э, МП-Э с мембранными и пружинными упругими элементами соответственно используются электроизмерительные преобразователи, основанные на компенсации магнитных потоков. Этот преобразователь выдает электрический сигнал / — постоянный ток (О—5 мА), сила которого пропорциональна измеряемому давлению.  [c.158]

Мембранную аналогию можно использовать и при кручении бргу-са с многосвязным поперечным сечением. На каждом внутреннем контуре Lk функция напряжений Ф (х , х ), как уже известно, должна иметь постоянные значения Ф , определяемые из уравнений (7.42). Поэтому и прогибы W Xi, Хг) мембраны в точках, соответствующих точкам контура Lu поперечного сечения бруса, должны быть одинаковыми и в силу соотношения (7.89) равными  [c.149]

Б качестве мембраны использовали мыльную пленку, в которой величина постоянного натяжения q определяется силами ее поверхностного натяжения. Другие исследователи использовали резиновые мембраны. В лаборатории испытания матёриалйз МВТУ им. Баумана имеется прибор с резиновой мембраной конструкции С. В. Бояршинова. Описание этого прибора и порядок определёния с его помощью приводятся в книге [45].  [c.151]

Подобное выражение можно записать и для усилия, к которому сводится действие на узел двух других нитей 02 и 04. Заменяя нелрерывную нагрузку, действующую на мембрану, сосредоточенными силами б приложенными в узлах, мы можем теперь записать уравнение равновесия узла в виде  [c.525]

Омагничивание агрессивных растворов проводили на установке простой конструкции, схема которой представлена на рис. 45. От источника УИП-1 подавали постоянный ток силой до 600 мА на однополюсный магнит. Напряженность магнитного поля увеличивалась до 80 х X Ю А/м. Жидкость при помощи центробежного насоса постоянной производительности циркулировала по стеклянной трубке, установленной перпендикулярно к силовым линиям магнитного поля. Для изменения скорости потока использовали трубки различного диаметра. Время пребывания сероводородсодержащего раствора в магнитном поле составляло 0,1 с при общем времени омагничивания 30 мин. В растворе содержалось 2500-2700 мг/п H S. Диффузию водорода через мембрану из стали марки 12Х1МФ определяли электрохимически по спаду потенциала запассивированной стороны мембраны.  [c.191]

I — простая мембранная конструкция, поддерживаемая воздухом (подъемная сила создается по всему периметру) 2 — надувная секция 3 — стеганая конструкция (образуется из многократно повторяюпдихся мембран) 4 — конструкция типа подушки (сохраняет свою форму благодаря внутренним связям) 5 — конструкция типа пересекающихся ребер (между пересекающимися надувными ребрами натягивается мембрана)  [c.297]

Внутренний контур будет представлять собой очертание жесткого дна. соединенного с наружным контуром посредством гибкой мембраны. Поверхность мембраны, подверженной равномерному давлению газовой среды, будет описываться уравнением, аналогичным уравнению, описывающему закон распределения касательных напряжений. Все приведенные выше рассуждения по сопоставлению уравнения прогиба мембраны и распределения в стержне касательных напряжений сохранят свою силу. Так же, как и в случае односвязной задачи, крутящий момент будет равен удвоенному объему пространства, заключенного под мембраной. В данном случае необходимо брать объем, заключенный между плоскостяд1и контуров и поверхностью мембраны.  [c.86]

Сигнализатор падения даилення имеет коробку с мембраной 8. Подводимое в ннжнюю полость коробки через насадку 9 контролируемое давление уравновешивается иружипой 7, сила сжатия которой определяет низший установленный предел давления. Чувствительный элемент тягой I соединяется с включающим 3 и выключающим 2 рычагами, поворачивающими держатель 4 ртутного выключателя. При понижении давления рычаг 3 поворачивает ртутный выключатель по часовой стрелке, включая соответствующую командную цепь. При повышении давления до нормального рычаг  [c.179]

Для этой цели над соплами 5 размещены два встречных приемных соила 7, соединенных трубками с герметичными камерами 13 и 4. Камеры разделены резиновой мембраной 8, центр которой может поступательно перемещаться с осью 9 и заслонкой W. Приемные сопла 7 воспринимают давление струй воздуха, выходящих из кожуха I. Если одна струя сильнее, то под влиянием создавшейся разности давлений мембрана S передвинется в ту или другую сторону. Основная масса воздуха из кожуха 1 устремляется по каналу 12 в воздушную камеру 15, из которой вытекает двумя сильными струями вверх и вниз через два щелевидных отверстия 11. Над этими отверстиями проходит заслонка 10 и перекрывает их поровну в том случае, если мембрана 8 находится в среднем положении. Если мембрана 8 прогнулась вираво, то заслонка 10 закрывает верхнее отверстие и открывает нижнее при прогибе мембраны 8 влево открывается верхнее отверстие и закрывается нижнее. Струя воздуха, выходящая из соответствующего отверстия 11, создает реактивную силу, вызывающую прецессию гироскопа по направлению к магнитному меридиану. Как только ось гироскопа совпадет с плоскостью меридиана, магниты 3 будут параллельны оси 16 ротора 2, и давление в приемных соилах, а также в камерах 13 и 14 будет одинаково, так как эксцентрик 4 перекроет отверстия поровну. В этом случае мембрана 8 и заслонка 10 займут среднее иоложение, и прецессия гироскопа прекратится, так как реакции воздушных струй будут взаимно уравновешиваться.  [c.205]

При отсутствии механического воздействия на мембрану 5 сжатий воздух, подаваемый из магистрали через штуцер , поступает в полость 9 и далее через каналы в клапане 4 в полость 2, являющуюся выходом распределителя (рис. а). При нажатии на резиновую мембрану 5 толкатель 6 перемещается вниз, и на первом участке пути кольцеобразный выступ толкателя упирается в резиновый вкладыш 7 клапана 4, перекрывая проход для воздуха из полости 9 в полость 2. Втулка S удерживается в это время в верхнем положении силой давления воздуха, действующего на ее нижннй торец. При дальнейшем движении мембраны 5 торец 13 нажимает на втулку 8, резиновый вкладыш Ю отходит от седла и полость 2 через продольные пазы во втулке 8 сообщается с полостью 3, связаинон с атмосферой. Толкатель 6 и клапан 4 возвращаются в исходное положение под действием пружин 11 и 12 после прекращения воздействия на мембрану 5. На рис. б и а схематически показан принцип работы распре-лелитрля.  [c.292]


Смотреть страницы где упоминается термин Силы мембранные : [c.520]    [c.314]    [c.340]    [c.125]    [c.378]    [c.258]    [c.36]    [c.185]    [c.180]    [c.144]    [c.193]    [c.226]   
Пластинки и оболочки (1966) -- [ c.478 , c.508 , c.510 , c.613 , c.615 ]



ПОИСК



Г мембранные

Ляв A. (Love Мембранные силы

Пневмоцилиндры мембранные 126 - Сила на штоке



© 2025 Mash-xxl.info Реклама на сайте