Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прикладные теории оболочек

Глава 9.6 ПРИКЛАДНЫЕ ТЕОРИИ ОБОЛОЧЕК  [c.151]

ПРИКЛАДНЫЕ ТЕОРИИ ОБОЛОЧЕК  [c.146]

Под прикладной теорией упругости понимают обычно раздел теории упругости, в котором кроме предположения об идеальной упругости материала вводятся дополнительные упрощающие гипотезы, такие как гипотезы плоских сечений или об отсутствии взаимодействия между продольными волокнами стержня в сопротивлении материалов. Так, например, для пластин и оболочек вводится упрощающая гипотеза о прямолинейном элементе, ортогональном к срединной поверхности как до, так и после деформации и др. В основном в прикладной теории упругости изучаются расчеты на изгиб и устойчивость тонкостенных элементов конструкций тонкостенные стержни, пластины, оболочки.  [c.185]


Расчет оболочек представляет собой сложную инженерную задачу и требует от расчетчика терпения и владения основами математического аппарата. Основной задачей теории оболочек как раздела прикладной теории упругости является определение напряжений и деформаций, возникающих в оболочке под действием внешних сил. В технической теории расчета тонких оболочек считается, что прогибы оболочки малы по сравнению с ее толщиной.  [c.213]

В пособии изложены методы решения задач прикладной теории упругости, приведены расчеты плоской гибкой нити, сплошного стержня, тонкостенного стержня открытого профиля, тонких пластинок и оболочек, толстых плит, призматических пространственных рам, массивных тел и непрерывных сред. Каждая глава содержит общие положения, принятые рабочие гипотезы, расчетные уравнения на прочность, устойчивость и ко-  [c.351]

Так, в отдельных задачах разыскивается такое приближенное решение, при котором то ли граничные условия не совпадают с действительными в каждой точке наружной поверхности тела, но в интегральном смысле по всей наружной поверхности тела (или, что лучше, на отдельных участках этой поверхности) условия равновесия выполняются то ли условия равновесия для отдельных внутренних точек тела не выполняются точно, но для всего поперечного сечения (такое положение имеется в задачах сопротивления материалов при расчете на изгиб балок) или в пределах любой толщины плиты или оболочки, хотя бы и в пределах любой бесконечно малой ширины (такое положение имеет место в прикладной теории расчета тонких пластинок и оболочек и т.п.) в интегральном смысле условия равновесия выполняются.  [c.58]

Наличие различного рода жестких ребер или упругих диафрагм в пластинках и оболочках, конечно, должно существенно-усложнить точный расчет таких пространственных конструкций так как необходимо рассматривать также и контактную задачу сопряжения по граничной линии (или даже в отдельных точках), тонкой упругой оболочки с жесткими или упругими стержневыми системами. Но именно в таких сложных задачах прикладной теории упругости оказываются особенно эффективными различные формы синтеза методов строительной механики стержневых систем с методами теории упругости.  [c.68]


Предметом гл. 12 служит то, что принято называть прикладной теорией упругости — стержни, пластины и оболочки. Общие пропорции курса не позволили уделить этим важным техническим объектам много места, да вряд ли это было бы целесообразно. Для практических расчетов следует обращаться к специальной литературе, изобилующей длинными формулами, таблицами и графиками. Общая точка зрения, проводимая в данной главе, состояла в том, чтобы получать во всех случаях основные уравнения с помощью единообразного приема, а именно отправляясь от вариационных принципов.  [c.14]

Геометрические зависимости теории оболочек в рамках гипотез Кирхгофа-Лява имеют общий характер. Их последовательное упрощение на базе различных геометрических предположений приводит к уравнению прикладных технических теорий.  [c.134]

Приближенные зависимости для кривизн, кручения, вектора конечного поворота и деформаций эквидистантного слоя в рамках теории малых деформаций приведены в разделах 9.4.3 и 9.4.4, посвященных прикладным нелинейным теориям оболочек.  [c.138]

Перечисленные выше допущения прикладной теории эластики оболочки формулируются следующим образом  [c.139]

УРАВНЕНИЯ ПРИКЛАДНОЙ ТЕОРИИ КОМПОЗИТНЫХ ОБОЛОЧЕК  [c.223]

Всякую сколько-нибудь сложную практическую задачу удается довести до окончательного результата только с помощью целого ряда дополнительных упрощающих допущений. Постановку и решение типичных задач при небольшом числе четко сформулированных дополнительных упрощающих допущений (гипотез) обычно относят к прикладной теории упругости. Например, в задачах расчета тонкостенных конструкций, схематизируемых набором оболочек и пластин, чрезвычайно важную роль играют гипотезы Кирхгофа—Лява именно на этих гипотезах построены классические теории пластин и оболочек. Основная цель настоящей главы — на простых примерах познакомить читателя с гипотезами Кирхгофа—Лява, используемыми в большинстве остальных разделов книги. Кроме того, в этой главе рассмотрена плоская задача теории упругости и принцип Сен-Венана.  [c.34]

Сложилось самостоятельное научное направление, связанное с разработкой корректных в том или ином смысле прикладных теорий пластин и оболочек, со своей проблематикой и большим количеством интересных результатов. Обзор соответствуюш,их исследований содержится в работе [35]. Анализ соответствуюш,их результатов в механике деформируемого твердого тела выходит за рамки настояш,ей книги.  [c.196]

В монографии отдается предпочтение аналитическим решениям типичных задач теории оболочек, составляющим золотой фонд этой науки. Авторы являются решительными противниками подмены фундаментальной дисциплины — теории оболочек — одним из разделов прикладной математики. Эта достойная сожаления тенденция является побочным эффектом интенсивного внедрения универсальных численных методов (таких, как методы конечных разностей и конечных элементов). На страницы журналов (да и монографий) лавиной хлынули работы с описанием численных экспериментов, реализованных порой с применением стандартных пакетов прикладных программ. Теория при этом используется лишь для того, чтобы выписать исходную систему уравнений. Возможные вопросы по формированию последней упреждаются дежурной фразой типа Уравнения равновесия берем в самом общем виде .  [c.3]

В предыдущих параграфах получены наиболее интересные в прикладном отношении вариационные уравнения теории оболочек. Методы их получения основывались на присоединении к основному функционалу (1.5) в качестве предварительных некоторых из соотношений теории оболочек (а) — (в).  [c.76]

Гузь А. Н. и др.]. О пределах применимости прикладных теорий в задачах устойчивости при осевом сжатии цилиндрических оболочек. — Механика полимеров , 1970, № 1.  [c.154]

В последние годы все большее значение для прочностных расчетов приобретает нелинейная теория упругости. Однако ее общие соотношения настолько сложны, что в инженерной практике ими, как правило, воспользоваться не удается, несмотря на наличие современных численных методов и вычислительных средств. В связи с этим необходимо учитывать специфику задач и соответственно упрощать общие соотношения, т. е. создавать приближенные прикладные теории. Наиболее актуальны прочностные расчеты гибких тел — стержней, пластин и оболочек.  [c.3]


Рассмотренные в книге контактные задачи относятся к тонкостенным конструкциям, представляющим набор оболочек, связанных круговыми кольцами. Общей теории оболочек и стержней и различным прикладным вариантам теории, применяемым в тех или иных ситуациях (в зависимости от класса оболочек, вида нагружения, конструктивных особенностей оболочечных систем, требований к точности расчета и т. д.), посвящены многие исследования [10, 13, 62, 63, 75]. Огромная библиография по теории оболочек содержится, в частности, в упомянутых монографиях, а также в работах [11, 14, 45] и др. В этой главе приведены основные соотношения теории оболочек и стержней, используемые в книге. Эти сведения приведены без подробных комментариев и носят конспективный характер.  [c.7]

ПРИКЛАДНЫЕ ТЕОРИИ УПРУГИХ ОБОЛОЧЕК  [c.20]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]

В практических расчетах элементов конструкций на прочность и устойчивость широко применяются так называемые прикладные теории оболочек. При их создании обычно принимают дополнительные упрощения, которые позволяют получить простые аналитические решения задач. Однако эти теории могут быть использованы для расчета только определенного класса конструкций. Например, рассмотренная в этой главе теория краевого эффекта применяется для определения напряжений лишь на узких участках оболочек, близких к цилиндрическим. Теория пологих оболочек используется при расчете элементов, геометрия которых мало отличается от плоских пластин. С помощью полубезмомент-ной теории удается получить простые формулы для расчета тонкостенного цилиндра, когда изменяемость деформированного состояния по окружности существенно выше, чем вдоль образующей. Теория мягких оболочек применяется при расчете конструкций весьма малой толщины, в тех случаях когда можно не учитывать изгибающие моменты.  [c.146]

Сложность общих соотношений теории оболочек приводит к необходимости их упрощения. Эти упрощения проводятся в зависимости от класса задач. Анализ вида нагружения, конструктивных схем, привлечение некоторых результатов численного анализа позволяют провести определенные разумные упрощения в расчетах оболочечных конструкций при локальных нагрузках и контактных взаимодействиях, выбрать те или иные в-арианты прикладной теории оболочек.  [c.20]

Разрешающее уравнение для оболочечной конструкции при ее произвольном локальном нагружении получим, используя основные зависимости прикладных теорий оболочек вращения и круговых колец (см. гл. 1). Ниже приведем соотношения для использованного варианта прикладной теории цилиндрических оболочек — полубез-моментной теории.  [c.111]

Методы расчета гибких брусьев, пластинок, оболочек и массивных тел рассматриваются в курсе Прикладная теория упругости , свободном от тех упрощающих гипотез, которые вводятся в курсе Сопротивление материалов . Методы теории упругости позволяют получить как точные решения задач, рассматри-вающихея в курсе Сопротивление материалов , так и решения более сложных задач, где нельзя высказать приемлемые упрощающие гипотезы.  [c.7]

Книга соответствует программе для строительных вузов. В ней рассматриваются основные уравнения теории упругости и методы их решения вопросы изгиба и устойчивости пластинок вариационные методы прикладной теории упругости основы расчета оболочек по моментной и безмоментной теориям основные уравнения теории малых упруго-пластических деформаций и методы их решения. Каждый метод по воаможности иллюстрируется примером.  [c.2]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]


Прикладная теория упругости отличается от математической тем, что для решения задач помимо закона Гука применяются некоторые дополнительные гипотезы деформационного характера (гипотеза плоских сечений для стержней, прямых нормалей для тонких пластин и оболочек и т. и.). При решении задач прикладной теории упругости наряду с точными методами решения соответствующих уравнений могут применяться и приближенные методы. Между прикладной теорией упругости, тесно связанной с запросами практики, и сопротивлением материалов нет четкой границы. Некоторые, наиболее цростые задачи, относящиеся к этому разделу, рассматриваются также и в курсах сопротивления материалов.  [c.8]

Метод конечных элементов применяется не только при решении двумерных задач прикладной теории упругости (пластины, оболочки и конструкции, составленные из пластинчатых и оболочечных элементов), но и объемных (трехмерных) задач теории упругости. Для лучшей аппроксима-цпи сложной формы копструкцип применяются наряду с прямоугольными конечными элементами также конечные элементы других форм. Этот метод может применяться не только в форме метода перемещений, когда за неизвестные принимаются узловые перемещения и определяются они из уравнений равновесия, но и в форме метода сил, когда за неизвестные принимаются узловые внутренние усилия а определяются они из условия совместности перемещений в узловых точках.  [c.228]

Прикладная теория упругости классхгческие теории пластин и оболочек МКЭ  [c.75]

Значительный интерес к многослойным оболочкам и пластинам наблюдается в области авиационной и ракетной техники, машиностроения и судостроения, в промышленном, гражданском и транспортном строительстве. Требования надежности и экономичности автомобильных дорог вызывают необходимость строгого анализа работы дорожных одежд как многослойных систем на упругом основании. В работах [53, 54, 55] построена уточненная прикладная теория многослойных пологих йболочек и пластин, способная учитывать особенности деформирования пакета, связанные с ортотропией слоев, с учетом явлений поперечного сдвига и нормального обжатия, со значительным различием в жесткостях и толш,инах слоев, их произвольным числом и расположением.  [c.63]

В настоящее время теории оболочек типа Тимошенко стали основными при решении ряда прикладных задач прочности и динамики оболочечных конструкций. Под теорией оболочек типа Тимошенко будем понимать теории, которые приводят в общем случае (без учета обжатия по толщине) к решению гиперболических дифффенциальных уравнений в частных производных десятого порядка. Число публикаций по данной проблеме чрезвычайно велико и достаточно полные сведения можно почерпнуть из работ обзорного характера [ 1.2, 1.6, 1.8, 1.13]. Отметим лишь некоторые ключевые и более поздние не отраженные в обзорах работы.  [c.7]

В работе над вопросами нелинейной теории оболочек автор постоян-но ощущал моральную поддеу жку со стороны своих учителей А. И. Лурье и И И. Воровича, давших много ценных советов и рекомендаций. Стимулирующее влияние на автора омазывало также сотрудничество с возглавляемым Л. Б. Царюком коллективом отдела тонкостенных конструкций НЙЙ Амханими и прикладной математики РГУ.  [c.4]

Р. А. Межлумян. Прикладная теория упруго-пластических оболочек и ее применение к расчету конструкций. Инженерный сб., вып., 10, 1951.  [c.46]

Среди таких моделей наиболее полно разработана модель прямой линии (модель С.П. Тимошенко), составившая основу многих теоретических и прикладных исследований в области механики слоистых оболочек и широко используемая в расчетной практике. Однако область пригодности ее уравнений ограничена (см. параграф 3.10), поэтому корректный расчет многих практически важных классов многослойных оболочек (с сушественным различием жесткостных характеристик слоев, сильной анизотропией деформативных свойств и т.д.) требует отказа от нее и обрашения к моделям более высоких порядков, имеющих более широкие области применимости. Важно подчеркнуть, что при отказе от классической модели или модели С.П. Тимошенко и переходе к той или иной корректной математической модели высокого порядка одновременно приходится отказываться и от традиционных процедур численного интегрирования краевых задач классической теории оболочек. Дело в том, что такой переход сопровождается не только формальным повышением порядка разрешающей системы дифференциальных уравнений, но и качественным изменением структуры ее решений, появлением новых быстропеременных решений, описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвиговых деформаций и обжатия нормали (подробнее этот вопрос рассматривается в параграфе 3.7). На этом классе задач оказывается практически непригодным для использования, например, метод дискретной ортогонализации С.К. Годунова [97], известный [118, 162 и др.] своей эффективностью на классе краевых задач классической теории и теории типа  [c.11]


Смотреть страницы где упоминается термин Прикладные теории оболочек : [c.59]    [c.223]    [c.6]    [c.32]    [c.511]    [c.31]   
Смотреть главы в:

Строительная механика ракет  -> Прикладные теории оболочек



ПОИСК



Оболочки Теория — См. Теория оболочек

ПРИКЛАДНЫЕ ТЕОРИИ ОБОЛОЧЕК (В.И. Усюкин)

Прикладные теории упругих оболочек и конструкций

Теория оболочек

Уравнения прикладной теории композитных оболочек



© 2025 Mash-xxl.info Реклама на сайте