Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Краевой задачи основное

Вместе с тем при сложном термосиловом, динамическом, квазистатическом или длительном нагружениях ответственных конструкций, изготовляемых по сложному технологическому процессу, адекватный анализ НДС может быть проведен только на основании решения краевых задач, базирующихся на реологических схемах, учитывающих различные нелинейные, зависящие от истории деформирования, свойства материала (рис. В.1). Кроме того, при расчете НДС должна быть учтена сложная геометрия конструкции. Ясно, что такого рода задачи могут быть решены в основном численными методами, наибольшей универсальностью из которых обладает метод конечных элементов (МКЭ).  [c.5]


Рассмотрим теперь краевую задачу. Баллистика — это наука о движении снарядов, мин, бомб, неуправляемых ракет в поле силы тяжести. Одна из основных задач баллистики состоит в построении  [c.263]

В книге изложены основы механики твердого деформируемого тела, методы и алгоритмы решения соответствующих краевых и начально-краевых задач на ЭВМ и некоторые вопросы математического исследования этих задач и алгоритмов. Основное внимание уделено задачам и методам классической теории упругости.  [c.3]

Вариационные методы исследования основных краевых задач  [c.108]

В доказательстве существования и единственности решени краевых задач вида (11.1) — (И.2) основную роль играет следующая теорема  [c.327]

Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]

Приведение основных краевых задач  [c.144]

Как уже отмечалось в 3.1, методы решения краевой задачи существенно зависят от того, является ли уравнение линейным или нет. Начнем с более простого линейного случая. Далее будем ограничиваться рассмотрением уравнений второго порядка — применительно к этим уравнениям можно достаточно просто продемонстрировать основные идеи, которые можно применить при решении уравнений любого порядка.  [c.103]


Исследование интегральных уравнений (7.8) и (7.9) удается провести, сочетая основные положения общей теории интегральных уравнений с упомянутыми выше свойствами гармонических функций и теоремами единственности краевых задач.  [c.100]

Перейдем к изложению основных идей МКЭ на примере одномерной задачи [247]. Рассмотрим двухточечную краевую задачу  [c.162]

Интересно отметить, что в ряде работ изучались краевые задачи, лишенные физического смысла, — задавалось значение так называемого Л -оператора от смещений. Постановка таких задач была связана с необходимостью изучить интегральные уравнения, сопряженные к некоторым интегральным уравнениям, соответствующим первой основной задаче.  [c.247]

В заключение остановимся еще на одном вопросе. Выше были сформулированы краевые задачи для бигармонического уравнения. В,отдельных случаях, например в случае второй основной задачи, при плоском состоянии, постоянные Ламе не входят в краевое условие. Это обстоятельство дает основание предположить, что они вообще не оказывают влияния на искомые напряжения. Однако такое утверждение является справедливым лишь для односвязной области. Дело в том, что в случае многосвязных областей для разрешимости соответствующих краевых задач необходимо ввести в решение определенные слагаемые, уже, как правило, содержащие эти постоянные. Поэтому окончательное решение все же оказывается зависящим от упругих постоянных. Подробно этот вопрос рассматривается далее на основе аппарата теории аналитических функций.  [c.283]

Рассмотрим вторую основную задачу для круга радиуса R, которая может быть сведена к краевой задаче вида  [c.402]

Будем считать, что напряжения на системе дуг М обращаются в нуль. Их можно устранить посредством частного решения второй основной задачи, задав, например, дополнительно на дугах Ь равные нулю напряжения. В результате суперпозиции на системе М получатся требуемые однородные краевые условия, а на системе L произойдут соответствующие изменения краевых условий. Согласно (7.6) и (7.11) будем иметь краевую задачу Римана с разрывными коэффициентами  [c.419]

Введенные выше потенциалы позволяют решение основных краевых задач теории упругости свести к интегральным уравнениям второго рода. Начнем с первой основной задачи. Пусть для упругого тела, занимающего область D, ограниченную поверхностью S, требуется определить смещения, предельные значения которых будут принимать заданные значения iF (< ) (см. (1.1) гл. III). Будем разыскивать смещения в виде обобщенного упругого потенциала двойного слоя (1.8). Тогда в соответствии с формулой (1.21) приходим к интегральным уравнениям  [c.557]

Сделаем несколько замечаний общего порядка [27]. Выше были рассмотрены вопросы решения основных краевых задач теории упругости на основе представления смещений в виде соответствующих потенциалов. Получены сингулярные интегральные уравнения и установлены условия их разрешимости в предположении, что граничная поверхность принадлежит классу поверхностей Ляпунова, а правая часть —классу Г. — Л. В этом случае и решение принадлежит классу Г. — Л.  [c.569]

И. О поведении решений основных краевых задач упругости в окрестности особых точек границы. — В кн. по теор. и прикл. механике. Аннотации докладов.—М.  [c.678]

Вначале рассмотрены основные методы численного анализа интерполирование, численное интегрирование и дифференцирование. решение линейных и нелинейных уравнений и систем, решение начальных и краевых задач для обыкновенных дифференциальных уравнений. Эти сведения позволят изучать материал последующих глав, не обращаясь к дополнительной литературе.  [c.3]

Прежде чем сформулировать соответствующее определение, введем ряд обозначений. Пусть R(u)=0 — вся совокупность уравнений, входящих в краевую задачу, т. е. основное дифференциальное уравнение и краевые условия. Уравнения сеточной краевой задачи запишем в аналогичном в иде Rh(Uh)=0. Погрешностью аппроксимации схемы на точном решении называется сеточная функция ah = Rh u), возникающая при подстановке точного решения краевой задачи в уравнение схемы.  [c.76]


При переходе от дифференциальной краевой задачи к сеточной нужно аппроксимировать не только внешние граничные условия, входящие в постановку краевой задачи, но и внутренние граничные условия, вытекающие из системы дифференциальных уравнений. Наиболее естественным способом аппроксимации внутренних граничных условий является замена соответствующих характеристических соотношений их сеточными аналогами. На практике часто применяют и другие способы. В частности, вместо характеристических соотношений используют некоторые из уравнений основной системы. Эти уравнения аппроксимируют с помощью явной схемы уголок , имеющей первый порядок аппроксимации, или с помощью неявной схемы прямоугольник второго порядка точности (см. п. 3 3.2, пример 6). Заметим, что в последнем случае трудности при решении уравнений для искомых функций на верхнем слое не возникают, так как в соседнем с границей узле все неизвестные могут быть определены по основной явной схеме.  [c.99]

Основная идея изложенного в гл. 10 метода комплексной переменной для решения плоской задачи теории упругости состояла в том, чтобы представить искомые напряжения и перемещения через функции комплексной переменной, т. е. по существу через гармонические функции действительных переменных Ха.. Для этих функций формулируются те или иные краевые задачи, методы решения которых и составляют содержание соответствующего раздела теории упругости. Большая часть эффективных методов решения пространственных задач теории упругости представляет собою развитие той же идеи. Здесь мы приведем и будем в дальнейшем использовать одно такое представление решения задачи теории упругости через четыре гармонические функции. Это представление было открыто Папковичем в 1932 г. и независимо Нейбером в 1933 г. Будем отправляться от уравнений Ламе при отсутствии объемных сил  [c.359]

Четвертая глава посвящена важнейшему вариационно-разностному методу решения краевых задач — методу конечных элементов. Изложена основная идея метода и особенности его программной реализации на примере решения двумерного стационарного уравнения теплопроводности в области сложной формы. Материал данной главы не связан с последующей.  [c.5]

Заметим, что если граничная поверхность 2 простирается до бесконечности, то проведенное выше рассуждение о поведении гармонических функций в бесконечности недействительно. В этих случаях требуется отдельное специальное аналогичное исследование, в частности, это необходимо для плоских задач, в которых поверхности 2 — бесконечные цилиндры. Однако и в этом случае требование об исчезновении скорости при удалении от внутренних границ области в бесконечность и требование об однозначности потенциала гарантируют единственность решения рассматриваемых основных краевых задач.  [c.173]

Таким образом, поставленные выше основные краевые задачи об определении аналитических функций <р(г) и х( ) свелись к задачам об определении функций ф(к(Р) = ф(Р, Х(а( ) = х(С) и (0 = 2 во вспомогательной плоскости комплексного переменного  [c.504]

Настоящая книга посвящена построению теории ползучести неоднородно-стареющих тел. Она состоит из шести глав. В гл. 1 приводится интегральная форма основных определяющих соотношений между напряжениями и деформациями, т. е. уравнений состояния дается постановка и формулируются условия, которые определяют решения краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, которые отражают наиболее характерные особенности деформирования стареющих материалов во времени. Доказывается ограниченность и асимптотическая устойчивость решения краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями.  [c.9]

Настоящая глава посвящена построению теории ползучести неоднородно-стареющих тел. Приводится интегральная форма линейных и нелинейных уравнений состояния, определяющих связь между напряжениями и деформациями. Дается постановка основных краевых задач теории ползучести для наращиваемых тел, подверженных старению. Исследуется структура ядер ползучести и релаксации, отражающих наиболее характерные особенности деформирования стареющих материалов во времени. Устанавливаются достаточные условия ограниченности и асимптотической устойчивости решений краевой задачи теории ползучести для неоднородно-стареющих тел с односторонними связями как внутри, так и на границе этих тел.  [c.12]

Непрерывное наращивание. Сформулируем постановку и приведем основные уравнения краевой задачи теории ползучести для неоднородно-стареющих тел при их непрерывном наращивании [21]. Пусть неоднородно-стареющее тело, материал которого обладает свойствами ползучести, занимает область 2. Известно, что оно изготовлено к моменту времени о = 0 и загружено в момент времени 0. Далее, начиная с некоторого момента времени I То, это тело непрерывно наращивается элементами материала различного возраста.  [c.32]

Определяющие соотношения и основные предположения. Асимптотическая устойчивость решения краевой задачи вязкоупругости для однородных тел без односторонних связей рассматривалась в [143], а разрешимость краевой задачи вязкоупругости в [357, 480, 544, 545, 555, 560]. Запишем обратный к (1.10) закон ползучести в форме  [c.38]


Теперь обсудим решение краевой задачи теории упругости неоднородных тел, которое приводит к определению эффективных модулей материала. Рассматриваемое тело представляет собой прямоугольную призму (см. рис. , а). Основные уравнения для компонент тензоров напряжений и деформаций — это уравнения (1), в которых коэффициенты жесткости удовлетворяют условиям (2), а также обычные уравнения равновесия в напряжениях и уравнения совместности деформаций теории упругости однородных изотропных тел. Последние соотношения здесь не приводятся, поскольку их можно найти в любом курсе теории упругости. Достаточно указать, что переменные поля (напряжений), имеющие вид  [c.42]

Математические формулировки основных законов, описывающих упругопластическое поведение, были приведены в разд. II, практические их приложения к точному анализу будут обсуждаться ниже. Уравнения, описывающие физические ограничения, т. е. формулировки соответствующих краевых задач, будут представлены в разд. IV, В.  [c.216]

Результаты решения задачи о кручении призматического бруса прямоугольного поперечного сечения. Решение задачи о свободном кручении призмы пря.моугольного поперечного сечения (рис. 11.25) в принципе выполняется по той же схеме, которая показана в предыдущем разделе в примере о свободном кручении эллиптического цилиндра. Однако в случае прямоугольного поперечного сечения практическая реализация этой схемы намного сложнее. Основная сложность состоит в решении краевой задачи (11.97), (11.98).  [c.62]

Методам и результатам решения указанных задач в настоящей книге уделено основное внимание. Повышение механических и тепловых нагрузок по мере увеличения мощности и маневренности ВВЭР и усиление требований к безопасности АЭС при нормальных и аварийных режимах приводит к возможности образования в ряде зон (у патрубков с учетом разнородности материалов и наплавок, в шпильках основного разъема, в зонах контакта) упругопластических деформаций. Условия нелинейного местного деформирования требуют усложнения методов решения краевых задач, с одной стороны, и разработки приближенных инженерных подходов к определению местных напряжений — с другой. Аналогичная ситуация склады-  [c.8]

Используя теории слоистых конструкций, можно формулировать содержательные краевые задачи, по решениям которых можно судить о жесткости и устойчивости слоистых композитов. Найдя в результате решения конкретной краевой задачи основные зависимые переменные Э1их теорий, т. е. результирующие силы и моменты, по принятой частной теории можно определить распределение макроскопических напряжений в слое. Вместо приближенных теорий слоистого тела можно попытаться применить точный анализ, как обсуждалось выше. В этом случае основными переменными являются макроскопические напряжения в слое и последний шаг оказывается излишним. В свою очередь, если известен подход (обсуждаемый в разд. VIII), позволяющий рассматривать неоднородные макроскопические напряженные состояния, то напряжения в каждом компоненте можно определить средствами микромеханики. Таким образом, микромеханика указывает связь между механическим поведением используемых в технике слоистых композитов, с одной стороны, и поведением их компонентов — с другой.  [c.18]

Постановка и решение краевой задачи. Основным механизмом торможения поперечных трещин в однонаправленных волокнистых композитах является развитие цилиндрических микротрещин сдвига, расположенных  [c.28]

Наибольшее распространение получили механические методы, которые в основном различаются характером расположения измеряемых баз и последовательностью выполнения операций разрезки и измерения деформаций металла. Напряжения в пластинах в простейшем случае определяют, считая их однородными по толщине, что справедливо только в случае однопроходной сварки. Так как разгрузка металла от напряжений происходит упруго, то по измеренным деформациям вырезанной элементарной пластинки на основании закона Гука можно вычислить ОН [214]. В случае ОСН при многопроходной сварке, применяемой при изготовлении толстолистовых конструкций, распределение напряжений по толщине соединения крайне неоднородно [86—88], поэтому достоверную картину распределения напряжений можно получить либо только по поверхности соединения [201], либо по определенному сечению посредством поэтапной полной разрезки образца по этому сечению с восстановлением поля напряжений с помощью численного решения краевой задачи упругости [104]. Последний экспериментальночисленный метод [104] будет рассмотрен подробно далее.  [c.270]

Используют два основных подхода к дискретизации и алгебраизации краевых задач, составляющие сущность методов конечных разностей (МКР) и конечных элементов (МКЭ). С помощью любого из этих методов формируется окончательная модель, исследуемая при выполнении различных процедур анализа проектируемого объекта.  [c.155]

В книге, написанной известными советским и болгарским учеными по программе спецкурса, читаемого для сту-дентов-механиков, излагаются основные теоретические результаты о течениях вязкой жидкости. Рассматриваются краевые задачи, возникающие при математическом описании обтекания тел, внутренних течений и течений с поверхностями раздела. Приводятся решения методами сведения к автомодельным переменным, асимптотическими разложениями, численными конечно-разностными и прямыми методами. Наряду с известными результатами отражены также новые разработки.  [c.296]

Сформулируем теперь краевые задачи непосредственно для функций ф(г) и ф(г). Начнем с первой основной задачи. Условие непрерывности смещений вплоть до границы эквивалентно условию непрерывной продолжимости выражения (2.7) во все точки границы. Осуществляя в левой и правой частях равенства (2.7) переход к граничным точкам, получаем  [c.375]

Основная идея метода прямых состоит в сведении решения краевой задачи для уравнения с частными производными к решению обыкновенных дифференциальных уравнений. В газовой динамике существует два численных метода, являющихся обобщением метода прямых метод интегральных соотношений Дородницына и метод Теленина, Эти методы используют в основном для решения внешних задач газовой динамики.  [c.180]

П ы X т е е в Г. Н. Общая и основная краевые задачи плоских струйных установившихся течений и соответствующие им нелинейные уравнения. — ПМТФ, 1966, № 1, с. 32.  [c.242]

Можно показать, что при любых значениях 9(z) п oji z) определяемые из (2.5) функции а, Су, г у, и и v удовлетворяют основным уравнениям (2.1). Другими словами, (2.5) есть общее решение плоской задачи (2.1) теории упругости. Однако при решении практически важных задач приходится налагать некоторые дополнительные условия на рассматриваемые величины на границе области, что приводит к так называемым краевым задачам, а соотношения (2.5), несмотря на свою общность, не являются конкретным решением этих краевых задач.  [c.22]

Установлены и исследованы основные краевые задачи нарагдиваемых тел, подверженных старению. Изучена структура ядер ползучести и релак-сацйи. Решен ряд конкретных задач о напряженно-деформированном состоянии Нарагциваемых тел, а также ряд смешанных задач. Рассмотрены задачи оптимизации армированных конструкций с учетом скорости возведения как при полной, так и неполной информации. Развиты общие методы исследования устойчивости и установлены условия устойчивости на конечном и бесконечном интервалах времени. Изложены принципы соответствия в линейной и нелинейной теории ползучести.  [c.2]


Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

Общие результаты теории ползучести нео дно родно-стар еющих тел, полученные в 1,2, справедливы для произвольных ядер вида К — К (Ь, т) - или соответственно К = КН - р (а ), г -Ь р (а ), х]. Однако для приложений этой теории существенное значение имеет выбор ядер такого типа, чтобы они, с одной стороны, достаточно точно воспроизводили основные свойства стареющих материалов в наиболее важных случаях их нагружения, а с другой стороны, приводили бы к постановке краевых задач, допускающих эффективное рещение. Поэтому ниже остановимся лищь на тех неразностных ядрах специального типа, которые позволяют наиболее просто применить теорию ползучести неодно-родно-стареющих тел к решению прикладных задач. Разумеется, выбор ядер для стареющих материалов эквивалентен выбору вида функций для модулей мгновенных деформаций (х) и О (т) и для мер ползучести С 1, т) и со ( , т), ибо, например.  [c.60]


Смотреть страницы где упоминается термин Краевой задачи основное : [c.517]    [c.122]    [c.5]    [c.39]    [c.170]   
Механика сплошных сред (2000) -- [ c.54 ]



ПОИСК



I краевые

Вариационные методы исследования основных краевых задач

Вывод основного тождества и формулировка краевых задач

Вычисление вращения векторного поля w — Gm(w) на сферах большого радиуса в Нх. Разрешимость основных краевых задач в перемещениях

Вычисление вращения векторного поля w—Gxw) на сферах большого радиуса в Нх. Разрешимость основных краевых задач теории геометрически пологих оболочек с функцией усилий

Гранично-временные интегральные уравнения для основных нестационарных краевых задач

Граничные интегральные уравнения для основных типов краевых задач

Задача краевая

Задача основная

Основные задачи

Основные краевые задачи

Основные краевые задачи

Основные краевые задачи и методы их решения

Основные краевые задачи нелинейной теории пологих оболочек

Основные краевые задачи неустановившейся ползучести

Основные краевые задачи теории упругости

Основные краевые задачи. Геометрические свойства линий скольжения

Основные методы решения краевых задач Анализ дифференциального уравнения теплопроводности

Основные плоские краевые задачи упругого равновесия

Основные положения алгоритма решения трехмерных краевых задач нестационарной теплопроводности методом конечных разностей

Основные уравнения и краевые задачи неустановившейся ползучести Общие уравнения неустановившейся ползучести

Приведение основных краевых задач к функциональным уравнениям

Топологический метод в проблеме разрешимости основных краевых задач нелинейной теории пологих оболочек в перемещениях

Топологический метод в проблеме разрешимости основных краевых задач нелинейной теории пологих оболочек с функцией усилий

Численные методы решения основных краевых задач математической физики



© 2025 Mash-xxl.info Реклама на сайте