Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения Уравнения вариационные

Углы напряжений 106, 109, 148 Уравнения вариационные 142—146  [c.287]

Посредством введения контактных слоев 5 взаимодействующие подобласти рассматриваемой конструкции объединяются в единую систему, и в зависимости от вида их напряженного состояния вариационное уравнение (II.8) формируется из соотношений (11.9)—(11.12), (11.14).  [c.21]

Используя физическое уравнение связи напряжения и скоростей деформации, а также условие трения (3.5), выразим множители при вариациях таким образом напряжения — через скорости движения, а скорости — через напряжения. Тогда вариационное уравнение (3.28) с учетом равенства (3.29) примет такой вид  [c.88]


Вариационное уравнение Кастильяно, связанное с действительным напряженным состоянием (удовлетворяются уравнения неразрывности деформаций), имеет вид  [c.10]

При исчезающе малых касательных напряжениях Х — О и >0 система уравнений (6.9 ) переходит в уравнение С. Жермен— Лагранжа (5.12). Для решения уравнений (6.9 ) могут быть использованы метод Фурье и вариационные методы.  [c.204]

Формулировка вариационного принципа зависит от того, какими величинами (функциями) характеризуется состояние деформированного тела. В принципе Лагранжа такими функциями служат перемещения li, а в принципе Кастильяно — напряжения ст. Именно эти принимаемые за основные функции подлежат варьированию (бесконечно малым изменениям) для того, чтобы получить вариационное уравнение. Все прочие функции считаются связанными с основными соответствующими зависимостями, приведенными в гл. 2.  [c.67]

Расчет гибких пластин и оболочек сводится к решению нелинейной системы дифференциальных уравнений, записанных относительно прогиба и функции напряжений. С помощью вариационных методов, метода конечных разностей и т. д. указанные уравнения заменяются  [c.285]

Поскольку вариации перемещений и напряжений произвольны и независимы, вследствие основной леммы вариационного исчисления мы заключаем, что из написанного условия следует равенство нулю множителей при соответствующих вариациях как в объемном, так и в поверхностном интеграле, т. е. уравнения (8.31), (8.32) и граничные условия (8.33), (8.34).  [c.221]

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]

Поскольку при применении вариационного уравнения (3.6.1) мы задаем смещения и, о, щ, согласные со связями, наложенными на тело, то шесть тождественных соотношений Сен-Венана (1.7.4) будут также выполнены. Но если мы зададим шесть компонентов напряженного состояния (а 5, Оу и т. д.), то должны быть выполнены шесть тождественных соотношений Бельтрами.  [c.72]


Согласно принципу минимума дополнительной работы, напряженное состояние, реализуемое в упругом теле, отличается от всех статически возможных напряженных состояний тем, что оно сообщает минимум функционалу . Поэтому функция напряжений Ф (х , Хг), определяющая действительное напряженное состояние скрученного бруса, должна удовлетворять вариационному уравнению (5.63), т. е.  [c.178]

Таким образом, вместо решения уравнения Пуассона (7.33) при граничном условии (7.13) функция напряжений Ф, минимизирующая функционал может быть приближенно определена одним из прямых методов вариационной задачи кручения при выполнении граничного условия (7.13).  [c.179]

И Представим функцию кинетических напряжений в виде Д П = = А Ш ) + ДхП , где А П ) определяется из граничных условий (3.1.55), а А1П< — из граничных условий (3.1.56) и вариационного уравнения (3.1.57).  [c.236]

Целесообразность введения сосредоточенных сил объяснялась возникающими преимуществами при решении краевых задач. Однако это утверждение не распространяется в явном виде на решения, использующие численные методы (вариационные методы, методы интегральных уравнений и т. д.). Тем не менее возможен такой характер краевых условий (существенная величина напряжений на малом участке поверхности), что их достаточно точный учет в решении представляется затруднительным и, кроме того, по тем или иным причинам не требуется значение (с высокой степенью точности) решения в окрестности их задания. В этом случае также целесообразно перейти к решению с сосредоточенной силой, осуществив в дальнейшем суперпозицию с решением Буссинеска или с решениями, заранее полученными для какой-либо поверхности с теми же радиусами кривизны.  [c.302]

Для вывода вариационного принципа Кастильяно, рассмотрим воображаемое напряженное состояние бац такое, что j = О, = О, xi е 5т. Значения, которые принимают величины 8ац на части поверхности 5ц, могут быть произвольны. Поскольку состояние 5ац удовлетворяет условиям равновесия, составим уравнения равновесия в форме Лагранжа, приняв за виртуальные перемещения истинные перемещения щ ж соответствующие  [c.259]

Элементарная теория, изложенная в гл. 3 и 4, основывалась на гипотезах, введенных ad ho и обоснованных лишь некоторыми соображениями качественного характера. Здесь мы получим те же уравнения, отправляясь от общих законов теории упругости. Наиболее надежный путь построения приближенных теорий, который будет использован в настоящей главе, состоит в том, что за основу принимаются вариационные уравнения теории упругости в одной из форм, приведенных в 8.7. После этого делаются некоторые предположения о характере распределения перемещений или напряжений (или того и другого независимо). Дифференциальные уравнения приближенной теории получаются как уравнения Эйлера вариационной задачи для функций от переменных, число которых меньше трех.  [c.386]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]


Важную роль в развитии теории упругости сыграли работы русских и советских ученых. Фундаментальные результаты в развитии принципа возможных перемещений, вариационных принципов механики, теории удара, а также интегрирования уравнений динамики принадлежат М. В. Остроградскому. А. В. Гадолиным была решена важная для практики артиллерийского дела задача о напряженном состоянии составных слоистых труб, подвергающихся действию внутреннего давления (развитие задачи Лямэ). X. С. Головиным  [c.10]

Последнее равенство устанавливает связь ме кду вариацией потенциальной энергии стер кня и работой вариаций внешних сил. Соотношение (120) представляет частный случай вариационного уравнения метода вариаций напряжений.  [c.337]

Если бы вариации бю были совершенно произвольными (удовлетворяющими нун<ным условиям на границе), то полученное решение было бы точным, так как вариационный принцип полностью эквивалентен системе уравнений равновесия и граничным условиям для напряжений. В данном случае условие экстремума выполняется лишь по отношению к некоторым Ью, поэтому полученное решение является приближенным. Однако если система функций — полная система, т. е. если любую функцию из данного класса, в частности, Ьгс х, у, ), можно приближенно с любой степенью точности представить в виде линейной комбинации этой системы функций, то, взяв достаточное число членов в (9.9), можно получить решение, вообще говоря, весьма близкое к точному.  [c.393]

Вариационная теорема формулируется следующим образом [87]. Определение решения уравнений движения, включающих функции Од (х), которые являются периодическими по отношению к вектору решетки и удовлетворяют условиям непрерывности перемещений и напряжений как внутри элементов, так и по их границам, равносильно отысканию стационарного значения функционала  [c.296]

Следующим новшеством этой книги является включение в нее механики непрерывных систем и полей (гл. 11). Вообще говоря, эти вопросы охватывают теорию упругости, гидродинамику и акустику, однако в таком объеме они выходят за рамки настоящей книги и, кроме того, по ним имеется соответствующая литература. В противоположность этому не существует хорошей литературы по применению классических вариационных принципов к непрерывным системам, хотя роль этих принципов в теории полей элементарных частиц все время возрастает. Вообще теорию поля можно развить достаточно глубоко и широко еще до рассмотрения квантования. Например, вполне возможно рассматривать тензор напряжение — энергия, микроскопические уравнения неразрывности, пространство обобщенных импульсов и т. д., целиком оставаясь при этом в рамках классической физики. Однако строгое рассмотрение этих вопросов предъявило бы чрезмерно высокие требования к студентам. Поэтому было решено (по крайней мере в этом издании) ограничиться лишь элементарным изложением методов Лагранжа и Гамильтона в применении к полям.  [c.9]

Ниже в 15.21 показано, что вариационным путем получаются и физические уравнения, связывающие напряжения с деформациями.  [c.448]

Таким образом, вариационный принцип Рейсснера формулируется так. Если известен общий интеграл уравнений совместности деформаций, то истинному состоянию тела соответствует стационарность функционала 1 а, о), следствием которой являются уравнения равновесия во всем объеме тела, условия равновесия на той части поверхности тела, где заданы поверхностные силы, и физические уравнения, связывающие деформации с напряжениями.  [c.524]

Дифференциальные уравнения, записанные относительно двух компонент перемещений, заменяются разностными уравнениями, которые выводятся при помощи вариационного метода, основанного на минимизации полной потенциальной энергии. При этом граничные условия в напряжениях, обычно затрудняющие решение задачи, становятся естественными, они входят в выражение для энергии и автоматически удовлетворяются при ее минимизации. Полная потенциальная энергия тела равна сумме энергий для всех ячеек сеточной области. При этом можно считать, что все функции и их производные остаются постоянными в каждой ячейке. Сетка может быть как равномерной (регулярной), так и неравномерной. Конечно-разностные функции для ячеек имеют, кроме того, весовые коэффициенты для учета неполных ячеек, примыкающих к наклонной границе. Получающаяся система алгебраических уравнений относительно узловых значений перемещений оказывается симметричной и положительно определенной и имеет ленточную структуру. В работе [8] дополнительно к основной, сетке строится вспомогательная и перемещения определяются в точках пересечения этих сеток. В результате этого нормальные деформации и напряжения вычисляются в центре ячеек основной сетки только через центральные разности.  [c.55]

Второй путь построения приближенных теорий заключался в введении гипотез физической природы относительно характера распределения смещений и напряжений. Использование вариационных принципов приводило к искомым уравнениям движения и граничным условиям. Таким образом были построены уточненные уравнения продольных и поперечных колебаний, учитывающие влияние инерции поперечного движения (Рэлей (1878)), теория изгибных колебаний круглой пластины (Кирхгоф (1852)), различные варианты теории цилиндрических и сферических оболочек [123]. С. П. Тимошенко (1921) показал, что учет деформации сдвига в поперечном сечении также важен при поиске адекватных моделей поперечных колебаний стержней. Отметим, что поправки на скорость распространения волн в бесконечном цилиндре, получаемые из уточненных теорий колебаний стержней, совпадали с несколькими первыми членами разложения точных решений Похгаммера — Кри.  [c.14]


Путем наложения некоторых связей в уравнениях обобщенного вариационного принципа можно получить сформулированные относительно скоростей уравнения вариационного принципа Хилла для упругих и упругопластических тел при произвольной величине деформаций [47, 73, 78, 79, 81]. Рассмотрим уравнения (3.6). Предположим, что варьируемые поля скоростей перемещений й принимают заданные значения на границе qSu, т.е. выполнены кинематические граничные условия в (3.6). В этом случае исчезает последний член в правой части (3.8). Далее предполагаем, что материальная производная тензора градиента деформации не является произвольной варьируемой величиной, а выражается через материальную производную тензора градиента перемещения с помощью четвертого равенства (3.6). Тогда исчезает второй член в правой части (3.8). Предположим также, что материальная производная первого тензора напряжений Пиола — Кирхгофа не является независимой варьируемой величиной, а выражается через материальную производную тензора градиента деформации с помощью последней формулы (3.6), т.е. определяющие соотношения предполагаются заданными. В этом случае вариационное уравнение (3.7) преобразуется в следующее  [c.117]

Метод решения вариационного уравнения Лагранжа. Уравнение Лагранжа (6.41) дает удобный метод приближенного решения задач МДТТ без дифференцирования напряжений. Это особенно важно при решении задач теории пластичности. Представим выражение Oijbeij в виде  [c.128]

Как известно, постановка задачи в перемещениях не является единственно возможной. В ряде случаев более целесообразным является использование постановки задачи в напряжениях. Краевая задача для соответствующей системы дифференциальных уравнений здесь использована не будет, а будет произведен переход сразу к вариационной постановке — минимизации (максимизации) соответствующего функционала с помощью применения преобразования Фридрихса [17] к получепным ранее проблемам минимизации функционалов вида  [c.202]

По выражению (3.37) можно варьировать напряжения в теле с помощью и параметров X, (i = l, 2,. . ., п), т. е., как и в методе Ритца, от континуальной задачи мы перешли к дискретной для системы с п степенями свободы. Вычислив U, получим функцию U = = и (Xi, р) i = i, 2, п). Из вариационного уравнения (3.34)  [c.65]

Вторую группу методов составляют так называемые прямые методы.. Их характерной особенностью является то, что минуя дифференциальные уравнения на основе вариационных принципов механики упругого тела строятся процедуры для отыскания числовых полей неизвестных функций в теле — перемещений, усилий, напряжений. В гл. 3 при рассмотрении двух основных принципов — Лагранжа (вариации перемещений) и Кастильяно (вариации напряжений) — уже были изложены два таких прямых метода, а именно метод Ритца (см. 3.5) и метод, основанный на принципе Кастильяно (см. 3.7). В дополнение к ним в данной главе излагаются общие основы наиболее эффективного в настоящее время прямого метода — метода конечных элементов (МКЭ). Перечисленные методы либо полностью основаны на вариационных принципах (методы второй группы), либо допускают соответствующую трактовку с использованием этих принципов (методы первой группы). Поэтому часто эти приближенные методы называют вариационными.  [c.228]

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

Здесь бар представляют собою компоненты деформации срединной плоскости 2бар = и-а, s + а. Формулы (12.4.3) достаточны для построения общей теории. Составляя функционал Лагранжа и приравнивая нулю его вариацию, мы получим некоторые дифференциальные уравнения для м и ц с соответствующими граничными условиями, т. е. построим техническую теорию изгиба пластин, заранее предполагающую выполнение известных кинематических ограничений. Но мы будем пользоваться вариационным принципом Рейснера и зададимся следующим законом распределения напряжений по толщине  [c.397]

При исчезающе малых касательных напряжениях Х"—>-0 и система уравнений (5.9 ) переходит в уравнение С. Жерд1ен — Лагранжа (4.12). Для решения уравнений (5.9 ) могут быть использованы метод Фурье и вариационные методы.  [c.136]

Если для определения минимума (в) использовать вариационное исчисление, то мы придем к уравнению (30) для функции напряжений ф. Вместо этого используем следующую процедуру приблилтенного решения задачи ). Представим функцию напряжений и виде ряда  [c.270]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Вариациоииое уравнение метода вариации напряжений. В разобранном частном случае было получено вариационное уравнение  [c.337]

При расчетах напряжений и деформаций в конструк1щях ВВЭР широкое применение находят методы теории оболочек и пластин, аналитические методы решения краевых задач в зонах концентрации напряжений, а также численные методы решения с применением ЭВМ (методы конечных элементов, конечных разностей, вариационно-разностные и граничных интегральных уравнений). Эффективность применения численных методов резко увеличивается, когда решаются задачи анализа термомеханической на-груженности сложных по конструкции узлов ВВЭР (плакированные корпуса и патрубки, элементы разъема, контактные задачи с переменными граничными условиями, элементы главного циркуляционного контура при сейсмических воздействиях).  [c.8]


К числу эффективных методов анализа напряженно-деформированных состояний в элементах реакторов относятся численные методы - метод конечных элементов (МКЭ) и вариационно-разностный метод (ВРМ), метод граничных интегральных уравнений ( ГИУ), получившие значительное развитие в последнее десятилетие благодаря их повьпиенной универсальности и появлению ЭВМ с большими быстродействием и памятью. Конечноразностный метод получил применение при определении термоупругих напряжений в зонах патрубков реакторов водо-водяного типа [10, 12].  [c.35]

Большой порядок систем уравнений, вызванный подробной дискретизацией области, и большая ширина полосы ненулевых коэффициентов, вызванная разветвленным характером геометрии расчетной области, могут при ограниченной разрядности ЭВМ привести к накоплению недопустимой погрешности. Примером такой разветвленной конструкции является патрубок в сосуде, содержаший отвод внутрь сосуда (рте. 3.6, а). Для расчета вариационно-разностным методом, рассмотренным вьппе для задач концентрации напряжений, была построена сеточная область, показанная на рис. 3.6, б. Соответствующее число уравнений равно 2413, ширина полосы — 55. Расчет выполнялся на ЭВМ соответственно с 12- и 7-разрядными числами. Погрешюсть расчета контролировалась по величине возникающей в месте закрепления опорной реакции, а также путем проверки по результатам расчета условий равновесия в сечениях тонкостенных участков патрубка. Если в первом случае оцененная таким образом погрешность в величине напряжений не превьпыала 1-2%, то во втором случае все результаты расчета оказались далекими от правильных.  [c.56]

В настоящей монографии приведены результаты численного и экспериментального исследования термоползучести гибких пологих замкнутых, открытых и подкрепленных в вершине оболочек вращения переменной толщины, выполненных из изотропных и анизотропных материалов, обладающих неограниченной ползучестью. В главе I дан краткий анализ подходов к решению задач изгиба и устойчивости тонких оболочек в условиях ползучести. Глава II посвящена построению вариационных уравнений технической теории термоползучести и устойчивости гибких оболочек и соответствующих вариационной задаче систем дифференциальных уравнений, главных и естественных краевых условий, разработке методики решения поставленной задачи. Вариационные уравнения упрощены для случая замкнутых, открытых и подкрепленных в вершине осесимметрично нагруженных пологих оболочек вращения, показаны некоторые особенности алгоритма численного решения. Результаты решений осесимметричных задач неустаповившейся ползучести и устойчивости замкнутых, открытых и подкрепленных в вершине сферических и конических оболочек постоянной и переменной толщины приведены в главе III. Рассмотрено также влияние на напряженно-деформированное состояние и устойчивость оболочек при ползучести высоты над плоскостью, условий закрепления краев (при постоянном уровне нагрузки), уровня и вида нагрузки, дополнительного малого нагрева, подкрепления внутреннего контура кольцевым элементом. Глава IV посвящена численному исследованию возможности неосесимметричной потери устойчивости замкнутых в вершине изотропных и анизотропных сферических оболочек в условиях ползучести. Проведено сопоставление теоретических и экспериментальных дан-лых.  [c.4]


Смотреть страницы где упоминается термин Напряжения Уравнения вариационные : [c.409]    [c.110]    [c.217]    [c.233]    [c.286]    [c.304]    [c.305]    [c.382]    [c.22]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.115 , c.116 ]



ПОИСК



Напряжения Уравнения

Напряжения Уравнения вариационные 115, II-Термоупругость оболочек

Ряд вариационный

Уравнение вариационное принципа виртуальных скоростей и напряжений



© 2025 Mash-xxl.info Реклама на сайте