Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классические вариационные принципы

Так как большинство приближенных методов решения различных задач теории упругости, пластичности и ползучести основывается на классическом вариационном принципе, согласно которому действительная форма равновесия тела отличается от всех возможных форм тем, что для нее полная энергия системы  [c.58]

В разд. IV описываются вариационные методы получения границ изменения эффективных модулей. При этом используются классические вариационные принципы, а также предлагаются новые вариационные принципы, дающие более точные результаты.  [c.67]


Следующим новшеством этой книги является включение в нее механики непрерывных систем и полей (гл. 11). Вообще говоря, эти вопросы охватывают теорию упругости, гидродинамику и акустику, однако в таком объеме они выходят за рамки настоящей книги и, кроме того, по ним имеется соответствующая литература. В противоположность этому не существует хорошей литературы по применению классических вариационных принципов к непрерывным системам, хотя роль этих принципов в теории полей элементарных частиц все время возрастает. Вообще теорию поля можно развить достаточно глубоко и широко еще до рассмотрения квантования. Например, вполне возможно рассматривать тензор напряжение — энергия, микроскопические уравнения неразрывности, пространство обобщенных импульсов и т. д., целиком оставаясь при этом в рамках классической физики. Однако строгое рассмотрение этих вопросов предъявило бы чрезмерно высокие требования к студентам. Поэтому было решено (по крайней мере в этом издании) ограничиться лишь элементарным изложением методов Лагранжа и Гамильтона в применении к полям.  [c.9]

В части В книги (гл. 13—18) наряду с классическими вариационными принципами систематически изложены модифицированные вариационные принципы со смягченными условиями непрерывности, которые положены в основу построений методов конечных элементов. Материал этой части книги в отечественной литературе освещен недостаточно.  [c.6]

Третье издание книги разбито на две части, часть А и часть В. Содержание части А, озаглавленной Формулировка вариационных принципов в теории упругости и пластичности , практически не отличается от первого издания, за исключением некоторых новых тем в гл. 5 и 7. Содержание части В, озаглавленной Вариационные принципы как основа методов конечных элементов , мыслится как улучшенное изложение приложения I второго издания. В этой части систематически излагаются классические вариационные принципы и модифицированные вариационные принципы со смягченными (ослабленными) требованиями непрерывности применительно к задачам статической теории упругости (теория малых перемещений и теория конечных перемещений) и динамической теории упругости, а также к теориям геометрической и физической нелинейности и теории изгиба упругих пластин. Последняя глава посвящается методам дискретизации и содержит вновь добавленное введение в метод граничных элементов.  [c.8]


Классические вариационные принципы  [c.343]

После этих предварительных замечаний перечислим классические вариационные принципы, выведенные в гл. 3. Это будет сделано в следующем параграфе.  [c.361]

Классические вариационные принципы линейной динамической теории упругости  [c.372]

Классические вариационные принципы в линейной теории изгиба пластин, основанной на гипотезах Кирхгофа  [c.395]

Классические вариационные принципы в задаче изгиба тонких пластин с учетом влияния поперечного сдвига  [c.413]

В этом параграфе рассмотрим классические вариационные принципы в задачах изгиба тонкой пластины с учетом эффекта поперечного сдвига. Задача ставится так же, как н в 8.8, за тем  [c.413]

Более подробно эти вопросы рассматриваются при формулировке классических вариационных принципов Лагранжа и Кастилиано.  [c.67]

С точки зрения приведенной теоремы сформулированная выше экстремальная задача (У.б) соответствует наиболее общему вариационному принципу теории трансверсально-изотропных оболочек. Поэтому из последнего как частные случаи должны следовать все другие вариационные уравнения. В частности, на базе (У.5) и (У.б) могут быть сформулированы классические вариационные принципы Лагранжа и Кастилиано.  [c.82]

Изучая движение материальных тел под действием сил, можно выделить весьма важный класс задач динамики, характерных тем, что некоторые из действующих на объект сил могут быть запрограммированы и реализованы в процессе движения человеком-пилотом (или автопилотом). Часть сил, приложенных к движущемуся объекту, конечно, определена (детерминирована) природой, а часть может изменяться в широких пределах по некоторым законам, заложенным в конструкцию летательного аппарата. Так, при изучении движения ракеты в поле тяготения Земли гравитационная сила вполне детерминирована (она, в первом приближении, подчиняется закону тяготения Ньютона), а реактивная сила может изменяться и регулироваться как по величине, так и по направлению. Каждому закону регулирования реактивной силы будет соответствовать некоторый закон движения ракеты. В современной ракетодинамике и динамике самолета такие задачи часто на> зывают задачами с управляющими (или свободными) функциями. Если управляющие функции все заданы и, следовательно, сделаны определенными все действующие силы, тогда мы будем иметь дело с обычной задачей теоретической механики найти закон движения объекта, если действующие на него силы неизвестны. Но выбор (задание) свободных функций можно подчинить некоторым, достаточно общим и широким, условиям оптимальности (экстремальности) и производить определение динамических характеристик для этих классов оптимальных движений. Метод проб или сравнений, лежащий в основе классических вариационных принципов, применим и здесь, но варьируется выбор управляющих функций, а не траекторий в пространстве конфигураций. Задачи такого рода имеют большое практическое значение в динамике полета ракет и самолетов, а также в теории автоматического регулирования-  [c.14]

Учитывая сказанное, будем уделять особое внимание определению функций, которые удовлетворяют требованиям классических вариационных принципов. Однако следует отметить, что некоторая степень межэлементной непрерывности требуется для функций, фигурирующих и в альтернативных принципах (принцип Рейсснера, гибридные принципы и т. д.), и даже для межэлементно несовместимых полей, которые соответствуют традиционным вариационным принципам на стадии формулировки конечных элементов. При построении глобальных уравнений необходимо потребовать непрерывности функций, задающих физические степени свободы.  [c.229]

Вариационными принципами классической механики называют общие закономерности механического движения, позволяющие из совокупности кинематически возможных движений механической системы, т. е. движений, допускаемых наложенными на систему связями, выделить действительное движение, которое она будет совершать в заданном силовом поле.  [c.390]

Попытка максимизировать быстродействия и КПД с помощью аналитических методов сделана в [15]. Задача быстродействия решена на основе принципа максимума для линейной зарядной системы второго порядка при пренебрежении индуктивностью в зарядной цепи. Задача о КПД решена методами классического вариационного исчисления также для системы второго порядка при пренебрежении инерционностью обмотки возбуждения и отсутствии корректного учета граничных условий. Допущения, сделанные в обоих случаях, сильно ограничивают практическую применимость полученных результатов. Поэтому в данном примере обе задачи решаются поисковыми методами, не требующими указанных выше допущений.  [c.220]


Это последнее утверждение играет важную роль потому, что оно позволяет положить в основу классической механики в качестве исходного постулата не второй закон Ньютона (или его ко-вариантную запись — уравнения Лагранжа), а вариационный принцип Гамильтона. Действительно, по крайней мере Для движений в потенциальных полях, постулируя вариационный принцип Гамильтона, можно получить из него как следствие уравнения Лагранжа. В теоретической физике иногда оказывается удобным вводить исходную аксиоматику в форме соответствующего вариационного принципа, устанавливающего общие свойства движения в глобальных терминах, и уже из этого принципа получать уравнения движения.  [c.280]

Для выяснения физического смысла условий равновесия термодинамических систем полезно еще раз обратиться к аналогии между термодинамическими и механическими системами. Эта аналогия имеет в данном случае серьезные основания критерий (11.1), сформулированный Гиббсом, является по существу обобщением соответствующих вариационных принципов классической механики на термодинамические системы. При этом, несмотря на использование нового, не имеющего механического аналога физического закона (второго закона термодинамики), Гиббс применил не только принятые в теоретической механике методы, но и ее терминологию.  [c.104]

В разделе II (главы 6—8) рассматриваются общие вопросы классической теории упругости обобщенный закон Гука, постановка и методы решения задач теории упругости, вариационные принципы и методы, плоская задача теории упругости в декартовых и полярных координатах, кручение стержней.  [c.4]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Возможны, однако, и другие обобщения классической механики, порождаемые более тонкой аналогией. Мы видели, что принцип Гамильтона дает возможность компактно и инвариантно сформулировать уравнения механического движения. Подобная возможность имеется, однако, не только в механике. Почти во всех областях физики можно сформулировать вариационные принципы, позволяющие получить уравнения движения , будь то уравнения Ньютона, уравнения Максвелла или уравнения Шредингера. Если подобные вариационные принципы положить в основу соответствующих областей физики, то все такие области будут обладать в известной степени структурной аналогией. И если результаты экспериментов указывают на необходимость изменения физического содержания той или иной теории, то эта аналогия часто показывает, как следует произвести подобные изменения в других областях. Так, например, эксперименты, выполненные в начале этого века, указали на то, что как электромагнитное излучение, так и элементарные частицы обладают квантовой природой. Однако методы квантования были сначала развиты для механики элементарных частиц, описываемой классическими уравнениями Лагранжа. Если электромагнитное поле описывать с помощью лагранжиана и вариационного принципа Гамильтона, то методами квантования элементарных частиц можно будет воспользоваться для построения квантовой электродинамики (см. 11.5).  [c.60]

Число подобных вариационных принципов классической механики весьма велико. Так, например, из принципа наименьшего действия непосредственно вытекает принцип Герца наименьшей кривизны. Согласно этому принципу точка, на которую не действуют активные силы, движется вдоль траектории наименьшей кривизны, что можно получить непосредственно из принципа Якоби, так как согласно этому принципу траекторией такой точки должна быть геодезическая линия, являющаяся, как известно, линией наименьшей кривизны.  [c.260]

Мы уже говорили, что вариационные принципы не вносят в механику нового физического содержания и редко упрощают практическое решение той или иной механической задачи. Их главное достоинство состоит в том, что они служат отправными точками новых теоретических концепций в классической механике. В этом отношении особенно плодотворен принцип Гамильтона, а также принцип наименьшего действия, хотя и не в такой степени. Что касается других принципов, то они имеют заметно  [c.260]

Вариационные принципы классической механики можно связать с вопросами, которые на первый взгляд могут показаться далекими от них. Например, имеется тесная связь принципа Гамильтона с общей теорией дифференциальных уравнений второго порядка в частных производных. Некоторые из таких вопросов мы рассмотрим в следующих главах, однако среди них есть немало таких, которые рассматривать в нашей книге нецелесообразно. К их  [c.261]

В главе IV этой книги содержится пространное и часто недостаточно последовательное изложение вариационных принципов и их выводов, которое сопровождается подробно разобранными примерами. Книга дает ясное представление об основных направлениях классической механики в начале этого столетия.  [c.262]

Мы видели, что вариационные принципы позволяют получить компактное и изящное описание поля. Может, однако, возникнуть вопрос каковы практические преимущества этого метода по сравнению с методом непосредственного составления уравнений поля На это следует ответить, что наиболее важные преимущества проявляются здесь в области, лежащей за пределами классической физики. Поэтому мы остановимся на них совсем кратко.  [c.399]


Исключительная общность вариационных принципов механики, возможность сравнительно простого их обобщения на многочисленные (немеханические) области физики, их связь с законами сохранения и группами Ли ставит эти принципы в центральное положение при решении многих фундаментальных проблем физики. Это может показаться удивительным, ибо классическая (аналитическая) механика, в которой эти принципы играют основную роль, является, строго говоря, существенно приближенной физической теорией. И тем не менее классическая механика остается в настоящее время и сохранится навсегда как эталон ясности и последовательности идей для всех математических теорий физических (и не только физических) явлений природы.  [c.5]

Предлагаемая вниманию читателя книга В. Прагера — одного из основоположников теории оптимального проектирования конструкций (широко известного также своими фундаментальными работами в теории пластичности), посвящена результатам в данной области, полученным за последнее десятилетие. Главная их часть основана на использовании в оптимальном проектировании конструкций классических вариационных принципов. Непосредственное применение методов вариационного исчисления к оптимальному проектированию конструкций приводит лишь к необходимым условиям стационарности оптимизируемого параметра, не гарантируя его локальной или глобальной минимальности (или максимальности). Достаточные условия оптимальности в ряде случаев можно получить, используя для рассматриваемого класса конструкций соответствующий вариационный принцип.  [c.5]

Прежде всего отметим, что сформулированные ранее вариационные принципы в данном случае не работают, так как рассматриваемые здесь поля перемещений не являются кинематически допустимыми, поля напряжений— статически допустимыми. Поэтому первая проблема здесь — построить надлежащие обобщения классических вариационных принципов. Идею таких обобщений поясним сначала на примере классической задачи Дирихле для  [c.208]

Вариационные принципы классической теории упругости впервые применил к гранулированным композитам, по-видимому, Поль [125]. Существенные результаты в этом направлении были получены также в работах Хашина и Штрикмана [74—78], Хашина [66, 69—71] и Хилла [84, 85]. В данном разделе будет продемонстрировано применение классических вариационных принципов.  [c.81]

После этих предварительных замечаний перейдем к выводу классических вариационных принципов в линейной теории изгиба пластин, основанной на гипотезах Кнрхгофа.  [c.396]

Более подробно рассматриваются эти вопросы при формулировке классических вариационных принципов Лангранжа и Кастилиано.  [c.82]

Важнейшим и наиболее общим дифференциальным вариационным принципом классической механики является принцип возможных перемещений, изложенный в XVII и XVIII главах этого курса.  [c.390]

Принцип максимума явпяг1ся расширением классического вариационного исчисления для случаев, когда управляющие воздействия имеют ограничения и описываются кусочно-непрерывными функциями. Он распространяется и на случай, когда на координаты состояния объекта накладываются ограничения типа неравенств [10]. Однако сложность математического описания ЭМУ приводит к существенным вычислительным трудностям при реализации принципа максимума.  [c.224]

Систематически излагается термодинамика и статистическая теория миогочастичных райиовесных систем. В основу статистической физики равновесных идеальных и неидеальных систем положены метод Гиббса и метод функций распределения Боголюбова. Излагается классическая и квантовая теория газа, твердого тела, равновесного излучения, статистическая теория плазмы и равновесных флуктуаций. Обсуждаются методологические вопросы курса, В книге рассматриваются также некоторые новые вопросы, еще не вошедшие в программу теория критических индексов, вариационный принцип Боголюбова, термодинамическая теория возмущений, интегральные уравнения для функций распределения (уравнение самосогласованного поля,, интегральное уравнение Боголюбова—Борна—Грина, уравнение Перкуса— Иевика).  [c.2]

В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]


Смотреть страницы где упоминается термин Классические вариационные принципы : [c.6]    [c.67]    [c.35]    [c.125]    [c.8]   
Смотреть главы в:

Вариационные методы в теории упругости и пластичности  -> Классические вариационные принципы

Вариационные методы в теории упругости и пластичности  -> Классические вариационные принципы



ПОИСК



ВАРИАЦИОННЫЕ ПРИНЦИПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ И ВАРИАЦИОННЫЕ ЗАДАЧИ ДИНАМИКИ ТОЧКИ ПЕРЕМЕННОЙ МАССЫ Вариационные принципы классической механики 2 Принцип Гамильтона

Вариационные интегральные принципы классической механики

Газ классический

Классические вариационные принципы в задаче изгиба тонких пластин с учетом влияния поперечного сдвига

Классические вариационные принципы в линейной теории изгиба пластин, основанной на гипотезах Кирхгофа

Классические вариационные принципы лииейной динамической теории упругости

Классические и модифицированные вариационные принципы в за дачах лииейной динамической теории упругости

Классические и модифицированные вариационные принципы в линейной статической теории упругости

Классические и модифицированные вариационные принципы в статической теории упругости при конечных перемещениях

Принцип вариационный

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте