Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения статически возможные

Проварьируем функционал по напряжениям, относящимся к моменту времени t, принимая в качестве вариаций напряжений статически возможные поля напряжений. Под Этими полями понимаются такие распределения напряжений, которые удовлетворяют однородным уравнениям равновесия и однородным граничным условиям на части поверхности тела Sp (вариации массовых сил и поверхностных нагрузок считаются равными нулю). Тогда  [c.357]


С помощью перечисленных методов был успешно решен ряд задач по оценке напряженно-деформированного состояния и несущей способности статически нагруженных конструкций, как однородных, так и имеющих в своем составе неоднородные участки в виде мягких и твердых прослоек При этом решение задач сводится, как правило, либо к статически возможным полям напряжений, либо к кинематически возможным полям скоростей деформаций. Возможны и решения, отвечающие одновременно статическим и кинематическим условиям, которые в данном случае считаются полными.  [c.98]

Интегрирование уравнений (2.3) дает бесконечное множество статически возможных полей напряжений Т (х, у, z), т. е. напряжений, удовлетворяющих условиям равновесия. Использование других упомянутых групп уравнений позволяет выделить из всех статически возможных истинное поле напряжений.  [c.28]

Указанные напряжения называют статически возможными или равновесными системами напряжений. Но в каждой задаче теории упругости таких систем напряжений существует бесконечно много,  [c.61]

Принцип Кастильяно из всех систем статически возможных напряжений выделяет такие, которые обеспечивают не только равновесие, но и совместность деформаций тела и, таким образом, являются искомым единственным решением задачи теории упругости. Для его формулировки рассмотрим два состояния тела первое —  [c.62]

Среди всех статически возможных полей напряжений истинными являются те, при которых функционал 5, принимает минимальное значение.  [c.357]

Следует отметить, что шесть компонентов тензора напряжений из системы трех дифференциальных уравнений определяются неоднозначно. Каждое решение из бесконечного множества решений этой системы, удовлетворяющее трем граничным условиям, соответствует некоторому статически возможному напряженном у состоянию.  [c.39]

Следовательно, под действием приложенных внешних сил может возникнуть бесчисленное множество статически возможных напряженных состояний. Таким образом, задача о нахождении напряженного состояния в теле является статически неопределимой.  [c.39]

Ниже (гл. V) будет показано, каким образом из бесконечного числа статически возможных напряженных состояний будет выделено реальное напряженное состояние.  [c.39]

В принципе минимума дополнительной работы рассматривается функционал, зависящий от компонент тензора напряжений, которые должны быть статически возможными, т. е. должны удовлетворять дифференциальным уравнениям равновесия в объеме V и граничным условиям на части Se поверхности тела о заданными поверхностными силами.  [c.105]


Согласно принципу минимума дополнительной работы, напряженное состояние, реализуемое в упругом теле, отличается от всех статически возможных напряженных состояний тем, что оно сообщает минимум функционалу . Поэтому функция напряжений Ф (х , Хг), определяющая действительное напряженное состояние скрученного бруса, должна удовлетворять вариационному уравнению (5.63), т. е.  [c.178]

Упругое состояние системы, при котором предел текучести достигнут в одной или нескольких точках, является по определению статически возможным. Действительно, при решении задачи о нахождении упругого состояния мы должны были позаботиться о выполнении уравнений равновесия при этом условие текучести нигде не было нарушено и только в отдельных точках это условие достигнуто. Соответствующее значение внешней нагрузки представляет нагрузку, определенную по способу допустимых напряжений (с запасом прочности, равным единице). Таким образом, мы имеем совершенно строгое доказательство того, что расчет по предельному состоянию приводит к большим аначениям допускаемой нагрузки, чем расчет по допустимым напряжениям.  [c.171]

Для нахождения нижних оценок несущей способности необходимо строить статически допустимое поле напряжений. Эта задача, как правило, оказывается более сложной, чем задача построения кинематически возможного поля. Действительно, строя кинематически возможное поле скоростей, мы можем выбрать границу с жесткой областью по произволу и совершенно не должны заботиться о том, может ли эта область на самом деле оставаться жесткой, тогда как статически возможное состояние должно распространяться на всю область, занятую телом. Один простой способ построения статически возможных полей напряжений мы покажем. Заметим прежде всего, что статически воз-  [c.517]

Составим разность работы статически возможных напряжений на некоторых деформациях и работы вариации внешних сил на некоторых непрерывных перемещениях  [c.200]

Таким образом, при фиксированных внешних силах истинному состоянию среди статически возможных напряжений соответствуют те, которые сообщают минимальное значение энергии деформации, записанной в форме (9.33). Принцип Кастильяно в форме (9.34) справедлив и для нелинейно-упругого тела.  [c.202]

Статическая теорема о предельном состоянии. Предельная нагрузка, определенная по статически возможным состояниям, не больше истинной предельной нагрузки. Пусть о —статически возможное напряженное состояние, От — предельное значение вектора напряжений, dep, du — истинные, а следовательно, и кинематически возможные приращения деформаций и перемещений. Пусть объемные силы равны нулю. Тогда по принципу возможных перемещений  [c.203]

Так как сг соответствуют ds, а состояние с напряжениями а, здесь выступает как одно из статически возможных допустимых состояний, то (рис. 9.3)  [c.204]

Рассмотрим теперь вместо перемещений напряжения, отвечающие положению равновесия. Мы знаем, что дифференциальные уравнения равновесия (123) вместе с граничными условиями (124) недостаточны для определения компонент напряжения. Мы можем найти множество различных распределений напряжений, удовлетворяющих уравнениям равновесия и граничным условиям в связи с этим возникает вопрос как отличить истинное напряженное состояние от всех других статически возможных распределений напряжений  [c.265]

Одному и тому же значению N формально, если исходить лишь из равновесия, может соответствовать бесчисленное множество различных по виду эпюр распределения по поперечному сечению внутренних сил. Во всех трех случаях, показанных на рис. 2,3, продольная сила, соответствующая эпюре а , одинакова N = Р. Таким образом, для того чтобы иметь возможность находить распределение внутренних сил, или, иначе, эпюру напряжений, по поперечному сечению бруса, нужно знать не только величину усилия N. Для отыскания закона распределения внутренних сил по поперечному сечению бруса одних уравнений статики недостаточно. Система относительно этого закона статически неопределима, в то время как относительно величины N, в зависимости от характера закрепления стержня, в одних случаях она может быть статически определимой, а в других — статически неопределимой. Все три эпюры, изображенные на рис. 2.3, а, б, в статически возможны — они удовлетворяют условиям равновесия. Количество таких статически возможных эпюр бесконечно. Но лишь одна из них является действительной.  [c.93]


Под 0 у будем подразумевать компоненты напряжений любого статически возможного состояния, не превышающие предела текучести , т. е. такие, что  [c.737]

Пусть а,у — статически возможные напряжения, т. е. э,- удовлетворяют внутри тела уравнениям  [c.747]

Пусть Si — какая-либо система статически возможных для нагрузки ft напряжений, всюду не превышающих предела текучести  [c.748]

Равенство достигается только в случае, если выбранные статически возможные напряжения отличаются от действительных Oij разве лишь на равномерное давление.  [c.748]

Мы получили довольно широкую вилку . Это объясняется тем, что принятое распределение а, у существенно отличается от действительного а,у в предельном состоянии. Вследствие этого значение ps оказалось явно заниженным. Можно предполагать, что истинное значение ро ближе к верхней оценке, хотя и не может с ней совпадать, так как поле напряжений ст,-у не является статически возможным и, значит, отличается от действительного.  [c.751]

При этом определение действительного начального напряженного состояния заменяется значительно более простой задачей подбора любого статически возможного напряженного состояния. Кроме того (в отличие от изложенного в предыдущем параграфе варианта энергетического критерия), не нужно определять дополнительные перемещения (х, у), х, у). Но этот путь решения неверен. В этом нетрудно убедиться на примере, приведенном в 24.  [c.193]

Для изображенной на рис. 5.2, б пластины, нагруженной четырьмя силами Р, в качестве статически возможного начального напряженного состояния можно взять Т% = 0, = О, 5 = О  [c.194]

Как отмечал С. П. Тимошенко, используемый им прием приближенного решения этой задачи можно трактовать, как замену действительного начального напряженного состояния пластины статически возможным начальным напряженным состоянием. Действительно, выражение (5.82) получается из энергетического критерия, записанного в форме Брайана, если начальные усилия Т1, Т1, 5 заменить статически возможными усилиями типа (5.77).  [c.212]

Система трех дифференциальных уравнений равновесия (4.3), содержащая шесть искомых функций ij (Х/г), имеет неоднозначное решёние. Функции aij (x/J, определяющие действительное напряженное состояние тела, будучи статически возможными и связанные законом Гука (4.5) с функциями eij (х/ ), должны подчиняться, как и фуйкции В у (xk), уравнениям, выражающим условия совмест-  [c.78]

Так как б Л (а,у) = Л (бст у) > О, приходим к следующему выводу, называемому принципом минимума дополнительной работы или вариационным принципом Каетильяно из всех статически возможных напряженных состояний тела при заданных внешних силах в действительности реали-вуется та напряженное состояние, для которого функционал Ч над тензором напряжений (о ), называемый дополнительной работой, имеет минимум.  [c.103]

Как известно, из Всех статически возможных напряженных состояний в действительности реализуется то, для которого вариация функ ционала (5.64), называемого дополнительной работой, равна нулю  [c.218]

Полным решением задачи теории идеальной пластичности называется такое решение, которое удовлетворяет уравнениям равновесия, условию пластичности в пластических областях, где напряжения и скорости деформирования связаны ассоциированным законом, и граничным условием, статическим и кинематическим. При этом должно выполняться еще одно условие, относящееся к возможному распределению напряжений в жестких зонах. По доказанному в жесткой зоне может существовать любое напряженное состояние, удовлетворяющее условиям равновесия, граничным условиям и условиям сопряжения с пластическими законами. Необходимо, чтобы напряженное состояние, возможное в жесткой зоне, удовлетворяло условию /"(ооО О, т, е. было допустимым для жесткопластического тела. При этом достаточно, чтобы можно было найти хотя бы одно точное раснределение напряжений. В отношении распределения скоростей и конфигурации жестких зон полное решение не единственно, однако из теоремы о единственности распределения напряжений следует единственность предельной нагрузки, переводящей тело в пластическое состояние, если условие пластичности строго выпукло. Если поверхность текучести только не вогнута, то предельная нагрузка определяется неединственным образом как правило, природа этой неединственности находит простое объяснение.  [c.490]

Здесь Akh — несущая способность гладкой полосы, ширина которой равна минимальной ширине надрезанной полосы. Выражение, стоящее в правой части формулы (15.13.3), всегда больше единицы, оно называется коэффициентом поддержки. При любом виде надреза несущая способность полосы с концентратором будет больше, чем несущая способность полосы с той же минимальной шириной. Это следует из статического экстремального принципа. Если предположить, что в заштрихованной на рис. 15.13.2 полосе растягивающее напряжение равно пределу текучести, а в остальной части полосы напряжения равны нулю, мы получим некоторое статически возможное напряженное состояние соответствующая нагрузка будет служить оценкой для предельной нагрузки снизу. Что касается поля скоростей для полосы с двумя круговыми вырезами, расчет его оказывается далеко не элементарным. Разделенные пластическо зоной части полосы движутся поступательно вдоль оси, удаляясь одна от другой с относительной скоростью V на граничных характеристиках нормальная составляющая скорости задана и выполнены условия (15.8.16). Эти данные позволяют или строить поле скоростей численно, или же решать задачу аналитически по методу Рима-на, представляя результат в виде некоторых интегралов, содержащих функции Бесселя. Что касается полноты построения решения, этот вопрос остается открытым. Возможность построения поля скоростей доказывает лишь кинематическую допустимость решения, следовательно, формула (15.3.3) дает наверняка верхнюю оценку. Но могут существовать и другие кинематически возможные схемы, например скольжение по прямой тп, показанной на рис. 15.13.1 штриховой линией, которые дадут для Р оценку более низкую, чем оценка (15.13.3).  [c.522]


Стат ически возможными вариациями напряжений назовем такие бесконечно малые напряжения в теле, которые не нарушают уравнений равновесия внутри и на границе тела. Как и прежде, доказательства ведем в дзкартовой системе координат, хотя выводы сохраняют силу и для произвольной системы координат, так как результат представлен в терминах инвариантов, не зависящих от выбора систем координат. Пусть Ьа , боу,. .., Ьх, у —статически возможные напряжения. Тогда, по определению, они должны удовлетворять уравнениям равновесия в форме  [c.200]

Если и, v,w — истинные перемещения, а е , Ву,. .., г х — истинные деформации, то они удовлетворяют соотношения м Коши (5.17) и, следовательно, для истинного состояния бФ = 0. Наоборот, в силу того, что вариации напряжений 6a.v, бсту, ба ., бт у, бту , бт независимы, а объем V произволен, в том числе и достаточно мал, то из условия бФ = О следуют соотношения Коши, так как условие бФ = О может быть выполнено при произвольных и отличных от нуля вариациях напряжении лишь при равенстве нулю содержимого каждой круглой скобки подынтегрального выражения. Таким образом, условие бФ = О эквивалентно выполнению условий совместности деформаций. Принцип возможных изменений напряженного состояния (принцип Кастильяио) состоит в том, что работа статически возможных напряжений на истинных деформациях и  [c.201]

Напряжения а,у, связанные с 2 ассоциированным законом (10.37), в той части тела, где г цфО, удовлетворяют условию текучести, в жесткой области — неопределены и, вообще говоря, не являются статически возможными.  [c.747]

Можно подобрать число ps таким образом, чтобы статически возможные для нагрузки / = Psff напряжения eij = psafj достигали, хотя бы где-нибудь, предела текучести. Число ps назовем статическим коэффициентом для данного поля а /.  [c.748]

Стационарность этого функционала рассматривается в вариационном принципе Кастильяно, который формулируется так. Если деформированное состояние тела подчинено условиям совместности деформаций, то истинному состоянию тела соответствует стационарность функционала I у), которая имеет место на множестве вектор-функций сравнения %, порождающих статически возможные напряжения а, т. е. при вариациях бх, соответствующих статически возможным вариациям бо. Последние к тому же обладают самоуравновешенностью вследствие равенства нулю вариаций внешних сил.  [c.521]

Справедливо и обратное утверждение если функционал /4 (х) приобретает стационарное значение на множестве вектор-функций сравнения х> порождающих статически возможные напряжения а, которым соответствуют самоуравновешенные вариации б(г, то деформации подчиняются условию их совместности. Это вытекает из того, что функционал /4[х] соответствует тождественному равенству П. Ф. Папковича (15.94) в предположении совместности деформаций в теле.  [c.521]

Вслед за С. П. Тимошенко многие авторы решали аналогичные задачи устойчивости пластин, нагруженных сосредоточенными силами, не определяя действительного начального напряженнога состояния, а фактически заменяя его статически возможным начальным напряженным состоянием.  [c.212]


Смотреть страницы где упоминается термин Напряжения статически возможные : [c.62]    [c.832]    [c.348]    [c.124]    [c.65]    [c.117]    [c.38]    [c.38]    [c.174]    [c.94]    [c.747]    [c.491]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.737 , c.746 ]



ПОИСК



Вариации возможные статически напряжений (усилий

Геометрически возможные перемещения, статически возможные напряжения, и равенство, их связывающее

Напряжения статические



© 2025 Mash-xxl.info Реклама на сайте