Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Привод Понятие

Справочник рассчитан на лиц, имеющих высшее и среднее специальное образование. В связи с этим в справочнике приводятся понятия, определения и формулы, как правило, без объяснения их, за исключением особо сложных случаев. В главах, посвящённых машинам и технологии, наряду со справочными данными, приводится также описательный материал, разъясняющий схему действия машины и технологический процесс.  [c.7]

В случае, когда массы звеньев приводятся к звену, совершающему вращательное движение относительно стойки, целесообразно пользоваться понятием приведенного момента инерции / этих масс относительно оси вращения звена приведения.  [c.125]


В противоположность этому под жидкими материалами понимают такие материалы, которые не имеют предпочтительной формы, так что попытка соединения интуитивных понятий упругости и текучести приводит, по крайней мере на первый взгляд, к внутреннему противоречию. Действительно, та идея, что текучие материалы нечувствительны к деформации, приводит к концепции, что внутренние напряжения должны определяться скоростью деформации,— концепции, которая воплощена в уравнении (2-3.1). (Тензор растяжения D, как будет показано в следующей главе, описывает мгновенную скорость деформации.)  [c.74]

Обычно используются два подхода статистический (молекулярно-кинетический) и феноменологический. В последнем случае понятие о континууме приводит к гипотезе о непрерывности полей температур, скоростей и пр., что упрощает математическое описание явления.  [c.26]

Объектом считают любой предмет, событие, понятие и т. п., о которых приводятся данные. Все объекты характеризуются атрибутами. Например, объект ЭВМ можно характеризовать такими атрибутами скоростью вычислений, объемом оперативной памяти, числом элементарных операций, числом процессоров, габаритами, количеством мультиплексных каналов и т. п. Сведения, содержащиеся в каждом атрибуте, называют значениями данных.  [c.93]

Принцип, по которому объединение элементов приводит к появлению новых свойств, отличных от свойств элементов, называют принципом организации. Организация — понятие более высокого ранга, чем функция и структура. Различные принципы организации могут приводить к построению объектов, различающихся своими структурами и конструкциями, но тождественным по своему функциональному назначению.  [c.305]

Аналогично приводятся движущиеся массы механизма к какому-либо его вращающемуся вокруг неподвижной оси звену, чаще всего ведущему. В этом случае вводится понятие приведенного момента инерции.  [c.54]

При определенных условиях (определенном сочетании режимных и геометрических параметров) наблюдается реверс вихревой трубы, заключающийся в том, что из отверстия диафрагмы истекают не охлажденные, а подогретые массы газа. При этом полная температура периферийного потока, покидающего камеру энергоразделения через дроссель, ниже исходной. А.П. Меркуловым введено понятие вторичного вихревого эффекта [116] и предпринята попытка его объяснения, основанная на теоретических положениях гипотезы взаимодействия вихрей. При работе вихревой трубы на сравнительно высоких степенях закрутки в приосевой зоне отверстия диафрагмы вследствие существенного снижения уровня давления в области, где статическое давление меньше давления среды, в которую происходит истечение (Р < J ), возникает зона обратных в осевом направлении течений, т. е. в отверстии диафрагмы образуется рециркуляционная зона. При некотором сочетании режимных и геометрических параметров взаимодействие зоны рециркуляции и вытекающих элементов в виде кольцевого закрученного потока из периферийной области диафрагмы приводит к образованию вихревой трубы, наружный  [c.89]


Таким образом, различные случаи опирания и нагружения стержня приводятся к основному случаю введением в формулу для так называемой приведенной длины /цр = vl. Это понятие впервые было введено Ф. С. Ясинским/  [c.506]

Введение понятия кажущейся вязкости приводит к определению кажущейся теплопроводности множества частиц (г)  [c.233]

Растворы относятся к конденсированным системам (жидкие, твердые) и поэтому силы взаимодействия между частицами растворенного вещества и растворителя, а также силы взаимодействия между частицами самого растворенного вещества достаточно большие. Это приводит к тому, что как бы уменьшается число частиц в растворе, способных самостоятельно перемещаться и участвовать в процессе, т. е. уменьшается активность растворенного вещества. Это можно учесть, введя понятие коэффициента активности у. Тогда активная концентрация, или просто активность, будет равна  [c.283]

Эти колебания в реальных веществах имеют затухающий характер, в связи с чем наблюдаются затухание тепловых упругих волн и невысокое значение коэффициента теплопроводности. В теории теплопроводности предполагается, что колебания нормального вида квантуются. В дискретной кристаллической решетке связь между ангармоническими колебаниями приводит к взаимодействию фононов между собой. Для описания этого процесса можно воспользоваться понятием длины свободного пробега. По аналогии с кинетической теорией газов теплопроводность твердого тела можно предста-  [c.157]

При построении любой системы геометрии в основу кладется абстрактное представление о месте , которое приводит к понятию геометрическая точка. Непрерывная последовательность сменяющих друг друга явлений порождает не поддающиеся точным определениям представления о мгновении и о текущем времени . Абстрактное представление о мгновении связывается с понятием момента времени. Поскольку кинематика представляет собой объединение в единую систему геометрии и хронометрии, в основе ее построения лежит абстрактное понятие, объединяющее представление о месте и о мгновении. Соответствующая абстракция называется движущейся геометрической точкой, т. е. точкой, которая характеризуется как своим положением ( местом ), так и мгновением ( моментом времени ). В геометрии пространство понимается как совокупность (множество) геометрических точек в хронометрии время понимается как множество моментов времени. Все дальнейшее построение кинематики полностью определяется тем, какие предположения делаются о взаимосвязи пространства и времени.  [c.11]

Совершенно новым понятием, к которому пришел Галилей, возможно, под влиянием работ Бенедетти, было понятие ускоренного прямолинейного движения, хотя Галилей не вводит термина ускорение и не приводит формулы ускорения как отношения изменения величины скорости ко времени.  [c.118]

Изучение кинетического момента твердого тела приводит к новым понятиям, характеризующим распределение масс в теле.  [c.171]

Приведение двух сил, у которых линии действия параллельны, к одной силе — равнодействующей, или сложение этих сил, позволяет получить способ приведения любой системы параллельных сил к простейшему виду. Кроме того, сложение двух равных по модулю, но противоположных по направлению параллельных сил приводит к введению понятия пары сил.  [c.26]

При неустойчивом положении равновесия случайные возмущения приводят к тому, что система при дальнейшем движении все дальше и дальше удаляется от положения равновесия. Таким образом, прежде всего необходимо установить характер положения равновесия системы. Для этого требуется ввести точное понятие устойчивости положения равновесия системы.  [c.408]

Прежде всего надо найти диапазон возможного изменения длины волны (или частоты), т. е. изучить шкалу электромагнитных волн (рис. 1), определив более точно расплывчатое понятие короткие электромагнитные волны". Однако для одних характеристик радиации (например, поляризации) значительное изменение длины волны не приводит к качественным нарушениям, тогда как для других физических явлений (дифракция и интерференция) выбор исследуемой области длин волн часто бывает критичен. Таким образом, выделение узкой области (от 0,4 до  [c.9]


Соединение электронных явлений и электромагнитной теории света является заслугой Лоренца — крупнейшего физика, работавшего на рубеже XIX и XX вв., хотя появлению этой фундаментальной теории предшествовал ряд наблюдений, опытов и попыток их обобщения. Создание электронной теории дисперсии послужило шагом к развитию феноменологической электромагнитной теории путем дополнения ее анализом микропроцессов, происходящих в веществе под действием светового поля. Такое описание приводит к хорошему согласию эксперимента и теории, базирующейся на представлениях классической физики. Вопрос в том, как трансформируются введенные понятия при квантовом описании процессов в веществе, требует обсуждения.  [c.135]

Этот вывод формулы Планка имеет большое познавательное значение. Для того чтобы получить ее таким способом, потребовалось ввести новое понятие вынужденного излучения. Справедливость окончательного выражения доказывает существование этого излучения. Это приходится специально отметить, так как долгое время попытки экспериментального обнаружения вынужденного излучения в оптическом диапазоне не приводили к успеху. В то же время в радиодиапазоне превалирует вынужденное излучение, а спонтанное излучение играет роль шума.  [c.429]

Заканчивая это предельно краткое изучение свойств фотона, целесообразно сформулировать следующие общие соображения. Введение понятия фотона привело фактически к созданию новой корпускулярной теории света, хорошо объясняющей некоторые оптические явления, истолкование которых в рамках волновой теории было затруднительно, а иногда невозможно. В то же время при правильном описании явлений эта теория не приводит к противоречию с исходными положениями волновой оптики. В частности, можно описать явления на границе двух сред в терминах как волновой, так и корпускулярной оптики. Конечно, было бы грубой ошибкой отождествлять скорость электромагнитных волн и скорость корпускул и пытаться поставить какой-либо решающий опыт, позволяющий выбрать одну из двух дополняющих одна другую теорий для описания всех сложных оптических явлений. Следует учитывать, что волновая и корпускулярная картины — это классические крайности (пределы) квантово-ме-ханической сущности явления, полностью соответствующей дуализму материи.  [c.452]

В предыдущих параграфах мы рассмотрели основные действия векторной алгебры, производя операции непосредственно над векторами как определенными геометрическими величинами. Этот способ рассуждений можно отнести к области прямого геометрического исчисления. Однако, как будет видно из дальнейшего, более э4>фективными оказываются способы, основанные на введении некоторых координатных систем. Надо еще раз напомнить, что найденные нами соотношения инвариантны, т. е. не зависят от выбора координатной системы и, следовательно, не изменяются при переходе от одной системы координат к другой. Это утверждение лишь в известной степени нарушается, как увидим далее, при рассмотрении векторного произведения. Следует подчеркнуть, что анализ основных понятий векторной алгебры приводит к заключению, что правило векторного сложения надо рассматривать как отображение одного из основных элементарных свойств векторов.  [c.37]

Формулы преобразования позволяют указать аналитическое определение скаляров и векторов, которое легко обобщается и приводит к понятию о тензорах.  [c.42]

Изучение теоретической механики мы начинаем с рассмотрения геометрических свойств механических движений. Этот раздел механики непосредственно опирается на основные положения геометрии, определяющие те пространственные соотношения, которые необходимо принимать во внимание, изучая механические движения. Изучение геометрических свойств механических движений приводит к необходимости выявления внутренних связей пространственных соотношений с временем. Понятие о времени не рассматривается в трехмерной пространственной геометрии.  [c.65]

Соотношения (1.7а) и (1.8а) определяют ограничения, налагаемые СВЯЗЯМИ на возможные перемещения, и приводят к понятию о числе степеней свободы материальной системы.  [c.23]

Позже А. Пуанкаре дал этому определению наименование устойчивости в смысле Пуассона ). К этой же группе определений смысла понятия об устойчивости движения принадлежат определения Томсона и Тета, Якоби и некоторые другие. Эти определения здесь не приводятся ).  [c.325]

Волновые уравнения (IV. 184) имеют частные решения в форме запаздывающих потенциалов. Читатель может найти их в руководствах по математической физике. Исследование уравнений (IV.184) приводит к понятию о гравитационных волнах. Эти вопросы далеко выходят за пределы настоящей книги.  [c.533]

Мы приводим начало первой статьи Эйнштейна по специальной теории относительности. Особенно важное значение имеет содержащееся в ней обсуждение понятия одновременности.  [c.371]

Примеры подобного рода, а также неудачные попытки обнаружить какое-либо движение Земли относительно светоносной среды приводят к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя. Более того, они свидетельствуют о том, что для всех систем координат, в которых выполняются уравнения механики, должны быть справедливы те же самые законы электродинамики и оптики, как это уже было доказано для величин первого порядка малости ). Эту гипотезу (содержание которой мы будем ниже называть принципом относительности ) мы намерены превратить в постулат и введем также другой постулат, который только кажется не согласующимся с первым, а именно, что в пустоте свет всегда распространяется с определенной скоростью с, не зависящей от состояния движения излучающего тела. Этих двух постулатов достаточно для того, чтобы, положив в основу теорию Максвелла для неподвижных тел, построить свободную от противоречий электродинамику движущихся тел. Будет доказано, что введение светоносного эфира излишне, поскольку в предлагаемой теории не вводится наделенное особыми свойствами абсолютно неподвижное пространство , а также ни одной точке пустого пространства, где происходят электромагнитные явления, не приписывается вектор скорости.  [c.372]


Понятие элементарная частица в наши дни является весьма сложным, и ряд экспериментальных фактов приводит к проблеме структуры элементарных частиц (электромагнитная структура нуклонов).  [c.337]

При вязком разрушении по механизму образования, роста и объединения пор критической величиной служит, как правило, пластическая деформация е/ в момент разрыва — образования макроразрушения. Для расчета е/ Томасоном, Макклинтоком, Маккензи и другими исследователями предложен ряд моделей, в которых критическая деформация при зарождении макроразрушения связывается с достижением некоторой другой эмпирической критической величины, например с критическим расстоянием между порами, с критическими напряжениями в перемычках между порами, с критическим размером поры и т. п. Альтернативным подходом к определению ef, не требующим введения эмпирических параметров, является физико-механическая модель вязкого разрушения, использующая понятие микро-пластической неустойчивости структурного элемента. В модели предполагается, что деформация sf отвечает ситуации, когда случайное отклонение в площади пор по какому-либо сечению структурного элемента не компенсируется деформационным упрочнением материала и тем самым приводит к локализации деформации по этому сечению, а следовательно, к потере пластической устойчивости рассматриваемого элемента без увеличения его нагруженности.  [c.147]

В гл. 6 этого учебника приводятся общие сведения об изделиях ма-шинострения и их составных частях. ГОСТами ЕСКД — 2.101—68, 2.102—68, 2.103—68, устанавливаются понятия и определения видов изделий, видов КД и стаций их разработки.  [c.354]

Весьма важно в подобных вопросах отказаться от широко распространенною отождествлении двух понятий 1) критическая сила и 2) предельная на рузка. Понятие критической силы тесно связано с классической схемой устойчивости и с методом проб. Употребление этого термина в других аспектах крайне нежелательно. Это приводит обычно к недоразумениям И взаимному непониманию. Предельная нагрузка характеризует несущую способность конструкции. Эго та на1рузка, при которой происходит либо разрушение,  [c.453]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

В настоящей г лаве даются понятия о термодинамической, статистической и информационной энтропии, рассматриваются типы термодинамических систем, а также основные принципы макродинамики и синергетики, контролирующие самоорганизацию диссипативных структур в квазизакрытых и открытых системах. Приводятся примеры самоорганизации таких структур применительно к процессам, протекающим вдали от термодинамического равновесия в различных системах.  [c.6]

В. Хорстехемке и Р. Лефер [26] распространили понятие фазового перехода на новый класс неравновесных явлений перехода, связанными со случайными свойствами среды. Этот тип переходов авторы [26] назвали неравновесными фа ювыми переходами, индуцированными шумами. Этим на 5ванием подчеркнут тот факт, что новый класс явлений перехода тесно связан с классическими равновесными фазовыми переходами и с неравновесными переходами, характерными для синергетических систем. При анализе неравновесных фазовых переходов, индуцированных случайными свойствами среды (внешний шум), придается важная роль флуктуациям свойств среды, которые в точках неустойчивости системы перестают быть шумом и приводят к глобальным изменениям в системе.  [c.43]

При этом искажается форма импульса и изменяется частота, соответствующая максимуму спектра В процессе расгфосгра -нения импульс может совершенно изменить свою исходную форму. Физические причины таких искажений многообразны так, например, в активной среде лазера наибольшее усиление происходит в передней части импульса, что должно приводить к дополнительному сдвигу максимума и соответственному увеличению групповой скорости, определяемой по указанной выше формальной схеме. Однако такая внутренняя перестройка импульса не может быть использована для передачи сигнала. В связи с этим нужно весьма критически относиться к иногда появляющимся публикациям, в которых утверждается, что групповая скорость лазерного излучения может быть больше скорости света в вакууме. Нужно ясно представлять себе, что в этом случае понятие групповой скорости теряет свой первоначальный смысл и величина U уже не определяет скорость распространения сигнала, которая, согласно специальной теории относительности, никогда не может быть больше скорости света в вакууме.  [c.53]

Подробное и<хледование достаточных условий существования экстремума приводит к понятию о так называемых кинетических фокусах. Не останавливаясь подробно на этом вопросе, скажем несколько слов об упомянутых достаточных условиях существования экстремума функционала, входящего в математическую формулировку принципа Эйлера — Лагранжа в форме Якоби.  [c.204]

Но где-то на уровне подсознания мы знаем, что увеличение энергии должно приводать к возрастанию хаоса. Таким образом, введением понятия "самоорганизация" ученые попытались объяснить, каким образом достижение высокой степени хаоса п системе самопроизвольно трансформирз ется в порядок. Для на> чного обоснования этого экспериментального факта бельгийским ученым Ильей Пригожиным была выведена теорема о минимуме производства энтропии в системах, находящихся в критическом состоянии [10]. Численное описание подобного рода упорядоченных "самоорганизовавшихся" структур производится, как правило, при помощи аппарата фрактальной геометрии, который оперирует с дробными мерностями D. Вообще, при помощи категории "мерность пространства" описывается большое число критических явлений.  [c.41]


Смотреть страницы где упоминается термин Привод Понятие : [c.135]    [c.380]    [c.126]    [c.115]    [c.18]    [c.97]    [c.71]    [c.270]    [c.375]    [c.461]    [c.282]   
Проектирование механических передач Издание 5 (1984) -- [ c.5 ]



ПОИСК



Гидравлический и пневматический приводы Основные понятия о гидравлическом приводе

Глава , Основные понятия, терминология, классификация гидравлических следящих приводов и условные обозначения

Общие сведения о проектировании и конструировании приводов машин и механизмов Основные понятия

Основные понятия о многодвигательном приводе конвейера

Основные понятия о пневматическом приводе

Основные понятия о приводе

Основные понятия об электрическом приводе

Понятие о гидравлическом и пневматическом приводах металлорежущих станков

Понятие о гидравлическом приводе

Понятие чувствительности привода

Электрический и электронный приводы Общие понятия об электроприводе



© 2025 Mash-xxl.info Реклама на сайте