Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распространение волн в сплошных телах

Процесс удара деформируемых тел связан с распространением волн в сплошной среде.  [c.14]

О распространении волн в упругопластических телах при кусочно линейных условиях пластичности // Материалы всесоюзного симпозиума по распространению упругопластических волн в сплошной среде. Баку, 1966. — С. 72 82.  [c.15]

Как известно, кристаллы являются системами с большим числом степеней свободы, спектр колебаний которых охватывает широкий диапазон частот от Unj, slO с до u j,,=10 с Низкочастотная часть этого спектра простирается в акустическую область, а высокочастотная - в инфракрасную область. В теории теплоемкости Дебая (1912 г.) кристалл рассматривается как сплошное изотропное твердое тело. Распространение волн в однородной среде описывается волновым уравнением  [c.198]


Теория теплоемкости Дебая предполагает, что кристалл можно рассматривать как непрерывную среду, совершающую упругие колебания >. Упругие волны, распространяющиеся в кристалле, имеют сплошной спектр, т. е. обладают непрерывным набором частот. Очевидно, что распространение звука в твердом теле — это и есть распространение таких упругих колебаний (продольных и поперечных). При нагревании кристалла в нем возбуждаются упругие акустические волны (волны Дебая), которые и определяют теплоемкость кристалла.  [c.122]

По мере распространения ультразвуковой волны в сплошном объеме вещества происходят необратимые потери энергии, интенсивность волны падает. В жидкостях максимальные потери обусловлены внутренним трением (вязкостью), и менее — ее теплопроводностью. В газах влияние вязкости и теплопроводности одинаково. В твердых телах появляются потери энергии на упругий гистерезис и пластическую деформацию, а также рассеяние ее в пол и кристаллической структуре, зависящее от упругой анизотропии и величины зерна.  [c.21]

Закономерности распространения возмущений в сплошных средах представляют значительный интерес для многих областей науки и техники. Предлагаемая книга посвящена волнам в упругих телах, причем из всех возможных типов возмущений рассматривается наиболее простой — гармонические волны. Несмотря на принципиальную возможность описать общий нестационарный случай набором гармонических составляющих, принятое ограничение типа возмущений следует считать существенным. При этом из поля зрения выпадает ряд интересных эффектов, имеющих большое практическое значение. Однако и в рамках гармонических процессов удается показать некоторые характерные особенности деформирования упругих тел, связанных с существованием в них двух типов волн — волн расширения и сдвига.  [c.5]

Все сказанное можно отнести не только к ударным силам, возникающим при контакте тел, но и к любым другим силам, характер изменения которых во времени изображен на рис. 17.1. Такие силы возникают при взрыве в полости, при распространении упругих волн в сплошной среде и при так называемых разрывах в газе.  [c.379]

Скорость продольных волн в сплошной среде. Мы познакомились с продольными упругими волнами, распространяющимися в стержне, поперечные размеры которого значительно меньше длины волны. Если же продольные волны распространяются в неограниченном твердом теле, то скорость их распространения определяется формулой  [c.444]


Ш а м г у н о в Щ. Д. Удар произвольным тупым телом вращения по границе полупространства, занятого сжимаемой жидкостью. — В сб. Материалы Всесоюзн. симпозиума по распространению упруго-пластич. волн в сплошной среде (1964 г.), Баку, АН Азерб. ССР, 1966, с. 406—423.  [c.192]

До сих пор, рассматривая распространение волн в кристаллах, мы не принимали во внимание дискретную структуру кристаллической решетки. Так можно поступать до тех пор, пока длина акустической волны X остается много большей, чем постоянная решетки а, или до частот 100 ГГц. Выше этого предела дисперсионные кривые, получаемые из уравнений классической теории упругости, уже плохо согласуются с микроскопическими расчетами, базирующимися на уравнениях динамики решетки. Поэтому, если оставаться в рамках феноменологических моделей механики сплошных сред, то уравнения состояния кристалла необходимо модернизировать для учета дискретности среды, макроскопически проявляющейся в нелокальности ее реакции на приложение переменного в пространстве внешнего воздействия. Это можно сделать с помощью так называемой нелокальной теории упругости [19], представляющей собой феноменологическое обобщение классической механики сплошной среды. Одно уравнение состояния элемента сплошной среды, описывающее как пространственную, так и временную нелокальность, уже приводилось нами при рассмотрении релаксационных процессов. Если не учитывать временную нелокальность (которая, в частности, ответственна за диссипацию энергии в среде), то для твердого тела нетрудно получить следующее уравнение состояния (нелокальный закон Гука)  [c.231]

Сказанное в равной мере относится к распространению волн в средах, имеющих характерный пространственный параметр. Примерами таких сред могут служить плазма (характерный размер — дебаевский радиус), неоднородная среда (масштаб неоднородности), а также обычные газообразные, жидкие и твердые тела при высоких частотах, когда длина звуковой волны становится сравнимой с длиной свободного пробега или периодом решетки, и приближение сплошной среды неприменимо. В этих случаях поле в данной точке среды зависит от значений поля в соседних точках, т. е. связь внутреннего и приложенного внешнего поля является нелокальной. Дисперсия, появляющаяся в этих случаях, называется пространственной. Итак, дисперсия становится особенно существенной в области частот и волновых чисел, близких к резонансным. Однако дисперсионные эффекты могут накапливаться с расстоянием, проходимым волной, и слабая дисперсия может стать заметной и вдали от резонансных частот. Примером может служить разложение света в спектр  [c.56]

Мы рассмотрели выше картину распространения бегущих волн в стержне и струне. В системах такого типа распространение волн могло происходить только по одному определенному направлению. Вообще же в упругой сплошной среде, например в упругом теле больших размеров, в воде или в воздухе, волны могут распространяться по всем направлениям. При этом картина распространения волн принципиально остается прежней, однако возникает ряд новых вопросов, на которых мы сейчас и остановимся.  [c.704]

Пособие написано на основе спецкурса, читаемого авторами на физическом факультете МГУ, и содержит материал, отражающий современное состояние важного раздела механики сплошных сред. Наряду с традиционными включены вопросы, получившие интенсивное развитие в последние годы. Подробно рассмотрены эволюция конечных возмущений в сплошной среде, взаимодействие и устойчивость ударных волн разобраны особенности распространения ударных волн в термодинамически неравновесных газах и твердых телах обсуждаются физические эффекты, сопровождающие распространение ударных волн в ионизированных газах и твердых телах. Исследуется явление световой детонации, сопровождающее взаимодействие мощного-лазерного излучения с веществом.  [c.2]


Интерпретация этого выражения подобна той, которая использовалась для формулы (276). Функция f(r— j) представляет исходящую из начала координат волну, а функция g r + jt) — волну, приходящую в начало координат. Первая из них удобна для исследования задачи о взрыве в полости тела. Последняя пригодна для решения задачи о взрыве на внешней границе тела. Примером последнего служит распространение волны, сходящейся к центру сплошного шара конечных размеров после внезапного приложения давления на всей его внешней поверхности.  [c.513]

Особенностью теплообмена излучением является то, что такой теплообмен не требует непосредственного контакта тел. Излучение рассматривается как процесс распространения электромагнитных волн, испускаемых телом. Излучение энергии сводится к преобразованию внутренней энергии тела в лучистую энергию электромагнитных колебаний. Излучение электромагнитных волн свойственно всем телам. Спектр излучения большинства твердых и жидких тел сплошной, непрерывный. Это значит, что эти тела обладают способностью  [c.207]

Колебания и волны в природе весьма разнообразны. Вызванные в среде каким-либо источником, колебания создают волну. Частица сплошной среды (газа, жидкости или твердого тела), будучи выведена из положения равновесия упругими силами, действующими на нее со стороны других частиц, стремится возвратиться в первоначальное положение. Соседние, ближайшие к ней частицы также выведены из равновесия и возбуждают более далекие. Таким образом, колебательное движение возбужденных частиц вызывает процесс распространения  [c.19]

Ультразвуковая волна — распространение упругих колебаний в сплошной среде (газах, жидкостях и твердых телах).  [c.111]

Влияние волновых процессов важно при высоких скоростях нагружения, например, при механических и тепловых ударах. В этих случаях напряженное и деформированное состояния и их изменение во времени определяются распространением, отражением и взаимодействием волн, и потому могут наблюдаться принципиальные отличия от статических состояний. Например, у составных тел из материалов разной плотности и при одинаковых модулях упругие статические деформации не будут отличаться от деформаций сплошных тел. В то же время отражение волн от границ между материалами может существенно изменить деформированное состояние. Необходимость учета волновых процессов тем важнее, чем больше протяженность тела и связанный с этим путь волны. Если при столкновении тела мало деформируются, то контактные явления незначительны. Тогда в зоне столкновения деформации невелики и главную роль играют волновые процессы. Скорость волн растет с увеличением модулей упругости (пропорционально ]/ Е или О). Поэтому у материалов с высокими модулями упругости и малым удельным весом (например, у бериллия) скорости упругих деформаций и обычно связанные с ними скорости хрупкого разрушения выше, чем у материалов с высокими удельными весами и малыми модулями упругости (например, у свинца).  [c.227]

Таким образом, скорость распространения продольных волн в неограниченном твердом теле несколько больше, чем скорость этих волн в стержне. Причина этого лежит в том, что упругость сплошной среды как бы больше, чем упругость в случае тонкого стержня. Действительно, боковые поверхности стержня свободны и не имеют по соседству среды, препятствующей их деформациям, тогда как если мы мысленно вырежем такой стержень в сплошной среде, его боковые поверхности будут находиться в соприкосновении с остальной массой тела.  [c.444]

Ру ii — упругое давление, компоненты девиатора тензора напряжений и компоненты тензора скоростей деформаций сплошной компоненты вещества соответственно. Функция ( ) может иметь разный вид. В работах [175, 228] рекомендуется /(g) =1 —g. Нелинейная зависимость вида / ( ) = 1 — (11.55) использовалась в [13, 14, 151] при численном исследовании распространения одномерных волн напряжения в твердых телах. Компоненты выражаются через et и следующим образом  [c.51]

Некоторые предосторожности следует соблюдать при опре делении величины с по таблицам. Таблицы для скорости в жидкостях можно часто применять без опасения получить значи-тельные отклонения однако для твердых тел следует учитывать, что при различных условиях волны могут распространяться в одном и том же твердом теле с различной скоростью. При применении прибора для обнаружения дефектов мы имеем Дело главным образом с продольными колебаниями в сплошной массе твердого тела. Они распространяются с максимальной скоростью, и поэтому эхо, вызываемое волнами этого типа, приходит первым и может быть легко определено. Скорость распространен ния продольных волн определяется упругими свойствами твердого тела и его плотностью по уравнению  [c.259]

Во-вторых, указанные допущения позволяют описывать макроскопические процессы в гетерогенной смеси (распространение в них волн, взрывов, пламени течения смесей в каналах и различных устройствах обтекание тел гетерогенной смесью деформации насыщенного жидкостью пористого тела, или композитного образца), как и в однофазной или гомогенной в рамках представлений сплошной среды с помощью совокупности нескольких (по числу фаз) взаимопроникающих и взаимодействующих континуумов, заполняющих один и тот же объем (область движения). При этом в каждом континууме определены свои макроскопические параметры, присущие каждой фазе (скорость, плотность, давление, температура и т. д.). Результаты исследования микропроцессов при этом будут отражаться в континуальных уравнениях с помощью некоторых осредненных параметров, отражающих, в частности, взаимодействие фаз. Построению таких уравнений и посвящены гл. 1—4.  [c.13]


Второе допущение позволяет описывать макроскопические процессы в гетерогенной смеси (распространение в них волн, течение смесей в каналах, обтекание смесями тел, деформацию пористого тела, поликристаллического или композитного образца) методами механики сплошной среды с помощью осредненных или макроскопических параметров.  [c.17]

Переход от первоначальных расплывчатых представлений о волнах и колебаниях к первым попыткам установить закономерности волновых и колебательных явлений впервые наметился в акустике. И как раз физическую сущность процессов, вызывающих слуховые ощущения, удалось разъяснить с помощью механики — как колебания упругих тел и распространение вызванных этими колебаниями волн сжатия и разрежения в воздухе или иной сплошной среде.  [c.250]

Буйвол В. Н. К вопросу о распространении волн в плоском теле Кель-вина---Фойгта. - В ки. Материалы Всесоюз. симпоз. по распространению упруго-пласт. поли в сплошных средах. Баку Изд-во АН АзССР, 1966, с. 120-125.  [c.249]

Изучение механизма диссипации энергии упругих волн в твердых телах составляет одну из интереснейших проблем механики сплошной среды. В большинстве практически важных случаев твердые тела имеют зернистую структуру, т. е. представляют собой систему, состоящую из объектов макроскопических размеров. При распространении достаточно длинных волн, в которых характерный размер возмущенной области намного больше размеров отдельных частей, составляющих твердое тело, среда может рассматриваться в среднем как однородная. Диссипация энергии усредненного движения в такой среде будет происходить на мак-роскопическом уровне , поэтому традиционные представления, основанные на молекулярном перемешивании, не могут быть в этом случае непосредственно использованы. В связи с этим изучение конкретных механических моделей различных сред представляет несомненный интерес (Л. Кнопов и Г. Макдоналд, J. Geophys. Res., 1960,65 7,2191—2197). Лишь после тщательного анализа механизма диссипации энергии станет возможной формулировка физически обоснованных уравнений движения, описывающих распространение волн в твердых телах.  [c.305]

Быковцев Г. И., Ивлев Д. Д., Мартынова Т. Н. О распространении волн в упруго-пластических телах при кусочно-линейных условиях пластичности.— В кн. Материалы Всесоюз. симпоз. по распространению упруго-пласт. волн в сплошных средах. Баку Изд-во АН АзССР, 1966, с. 72—  [c.249]

Основные свойства упругих колебаний высокой частоты или ультразвуковых колебаний, как известно, описываются теми же закономерностями, что и свойства колебаний звукового диапазона. В частности, это касается условий распространения упругих волн в сплошной изотропной среде, обладающей упругими свойствами. Однако ультразвуковые колебания могут быть примен1 ны для решения ряда новых задач. Примером может служить исследование изменения различных характеристик жидких и твердых тел в зависимости от скорости распространения ультразвука и коэффициента затухания с помощью импульсно-фазового компенсационного метода приборами типа УЗИХ, разработанных Н. И. Бражниковым [9], [10]. Погрешность измерений скорости ультразвука такими приборами составляет 0,007 и 0,003% на частотах соответственно 1 и  [c.291]

Действие волновых преобразователей основано на использовании явлений, связанных с распространением электромагнитных волн (например, оптического диапазона) и волн в сплошных средах (акустические преобразователи). Наличие таких свойств, как сдвиг фазы волны при отражении от двил<ущейся поверхности колеблющегося тела, позволяет успешно применять их для измерения параметров вибрации (подробнее см гл. VI, разделы 5 и 6)  [c.209]

Контактные задачи для тел периодической структуры с непериодическим нагружением имеют значительно меньшую библиографию. Здесь следует отметить работы М. Л. Бурышкина и его композиционный метод [80, 81]. Задачам механики сплошной среды для областей периодической структуры, в том числе и о распространении волн в телах и волноводах периодической структуры, посвящены работы Л. Бриллюэна, М. Пароди [78], Л.А. Вайнштейна [83 В. В. Владимирского [85  [c.12]

Выше речь шла о волнах в сплошной среде. В ограниченных твердых телах могут распространяться волны других типов. Например, волны в стержнях, волны на свободной границе твердых тел (рэлеевские волны), из-гибные волны и волны других типов. Вопрос о том, в какой мере нелинейные эффекты проявляются при их распространении, частично рассматривался в [31—33]. В [33] был рассмотрен ряд случаев распространения волн конечной амплитуды в ограниченных твердых телах. В пластине возможно, как известно, возникновение волн продольных, поперечных и изгибных, причем для каждого типа волн имеется набор различных мод (или нормальных волн). Волны (или моды) с дисперсией фазовой скорости в [33] не рассматриваются (наличие дисперсии приводит к тому, что непрерывно нарастаюш их решений второго приближения нет). Из всех нормальных волн только две волны — нулевая продольная волна и нулевая поперечная волна, поляризованная в плоскости пластинки,— не имеют дисперсии. Нулевая продольная волна, как показывает анализ, будет искажаться, причем при направлении распространения волны вдоль оси X объемная сила имеет такой же вид, как первый член в правой части (8.41), а в граничных условиях (обращение в нуль соответствующих напряжений на свободных границах) также должны быть учтены члены второго порядка малости из (8.16). Нулевая поперечная волна в пластине, как и в случае сплошной среды, искажаться не будет, так как возникающая объемная сила ортогональна к смещениям во второй гармонике.  [c.332]

Первый том носит обш,ее название Методы и приборы ультразвуковых исследований настояш,ий полутом (часть А) содержит семь глав. Первая глава Распространение волн в жидкостях и твердых телах , написанная Терстоном, и вторая Волноводное распространение в протяженных цилиндрах и пластинках , написанная Микером иМейтцлером, являются вводными. В них в сжатой форме изложены основы механики сплошных сред, главным образом для колебаний малых амплитуд. Авторам удалось в сравнительно небольшом объеме дать основные сведения, на которых базируется содержание последуюш,их специальных глав.  [c.6]

Результат, полученный при теоретическом анализе свойств дисперсионных соотношений и связанный с наличием нормальных волн с противоположными знаками групповой и фазовой скоростей, оказался довольно необычным в теории волноводного распространения, содержание и основные понятия которой формировались на базе изучения относительно простых ситуаций в акустике и электродинамике. В связи с этим проведены эксперименты [16, 228], целью которых была проверка возможности возбуждения такого типа волн. Эксперименты проводились для цилиндров и призм из различных материалов, возбуждаемых с торца пьезоэлектрическими преобразователями. Подводимый сигнал представлял собой узкополосный гауссов импульс с различными несущими частотами. Вследствие дисперсии первоначальный импульс искажался и на выходе наблюдались импульсы, соответствующие нормальным распространяющимся модам, возкюжным при данной частоте. По времени задержки приходящих импульсов вычислялась групповая скорость соответствующих мод. О степени согласования теоретических и экспериментальных данных можно судить по рис. 47, взятому из работы [228]. На нем приведены вычисленные (сплошные линии) и замеренные (точки) данные о групповой скорости для пластины из плавленого кварца 20,32 X 1,77 х 0,0381 см. При расчетах принималось Сз = 3,8 X 10 м/с, V = 0,17. Степень согласования теоретических и экспериментальных данных очень высокая. Кроме того, приведенные в работе [228] осциллограммы наглядно свидетельствуют о возможности эффективного возбуждения обратных волн. Приведенные экспериментальные данные достаточно интересны также с точки зрения оценки возможности модели бесконечного упругого слоя при анализе волновых процессов в конечных телах.  [c.142]


Ч[ТО напряжения Ni, М2 и N3 таковы, что не вызывают распространения сдвиговых микротрёщин и тем самым разрушения сплошного тела (собственно говоря, это накладывает ограничение в основном на разность главных напряжений). Однако предполагаем, что напряжения Ni, N2, достаточно велики для того, чтобы поддержать распространение стационарной волны разрушения. Тогда в полупространстве х > О с некоторой скоростью V Пойдет волна разрушения (дробления), которую мы будем представлять себе в виде плоскости разрыва х = Vt разделяющей разрушенный материал от неразрушенного (x Vt). Разрушенный материал представляет собой множество отдельных частиц. Движущихся со скоростью V относительно покоящейся неразрушенной части тела. Волна разрушения, очевидно, имеет толщину порядка характерного размера частиц. Запишем законы сохранения массы и количества движения на скачке разрушения. Имеем  [c.475]

Несмотря на то, что нелинейность зависимости между напряжением и деформацией в кристаллических твердых телах при напряжениях, близких к нулю, имеет далеко идущие последствия как в отношении внутренней структуры твердого тела, так и в отношении явлений механики сплошной среды таких, как устойчивость и распространение волн экспериментальное изучение такого нелинейного поведения подверглось практическому забвению после исчерпывающих работ Грюнайзена. При тщательном изучении литературы по экспериментальной физике сплошной среды, равно как в области металлофизики и металлургии, не удается обнаружить почти никаких ссылок на его работы даже тогда, когда появлялись, очевидно, изолированные переоткрытия нелинейности при малых деформациях. История разработок этого вопроса в XX веке должна была бы уделить внимание этому факту, чтобы понять, почему нелинейное поведение перестало привлекать к себе то внимание, которого, по-видимому, требовала его важность.  [c.173]

Ближе к существу физической проблемы, рассмотренной Дэвисом и Гопкинсоном, были результаты опытов, проводившихся в условиях симметричного свободного удара, показанные на )ис. 4.174. Часть докторской диссертации Хартмана (Hartman 1967, 1], [1969, 1]) посвящена измерению динамических деформаций с помощью дифракционных решеток в поликристаллах отожженной а-латуни. Измеренный квазистатический предел упругости этой отожженной латуни составил У=14 500 фунт/дюйм (10,2 кгс/мм ). Значение динамического предела упругости, определенное по фронту начальной волны с помощью измерений профилей волны деформаций двумя дифракционными решетками, изображенных на рис. 4.174, было равно У=27 700 фунт/дюйм (19,5 кгс/мм ) увеличение произошло почти в два раза. Путем сопоставления результатов эксперимента (сплошные линии) с расчетными, основанными на снижении скоростей волн и наибольших деформаций, выраженных через предел упругости У, я установил, что поведение образцов не описывается правильно ни квазистатическим значением 10,2 кгс/мм , ни более высоким динамическим значением 19,5 кгс/мм . Скорости распространения волн и наибольшие деформации, по экспериментальным наблюдениям, как и в любых твердых деформируемых телах, для которых рассматривались профили волн конечных деформаций, соответствовали пределу упругости У=0. На рис. 4.175 продолжительность перемещения (темные кружки) от одной позиции до другой и максимальные де юрмации для обеих позиций согласуются с полученными на основании расчета, в котором использована параболическая аппроксимация при г=3. Таким образом, приходим к типу поведения материала, который характеризуется графиком, показанным на рис. 4.176. Эксперименты с образцами поликристалли-ческого магния, для которого легко добиться существенного изменения предела упругости У, дали результаты (Bell [1968, 1]), идентичные с полученными для образцов из алюминия и а-латуни.  [c.275]

Ранее бьшо рассмотрено искажение и взаимодействие волн, распространяющихся в сплошной среде в одном направлении. В твердых телах, благодаря тому, что скорость распространения продольной волны отличается от скорости распространения поперечной волны, становится возможным при вьшоллении некоторых условий, иногда называемых резонансными, взаимодействие волн при их пересечении под некоторым углом. В результате такого взаимодействия генерируется бегущая волна комбинационной частоты, направление распространения которой определяется резонансными условиями. Резонансные условия проще всего получить, рассматривая звуковые волны  [c.319]

Предлагаемая книга посвящена распространению ультразвуковьЕх волн в жидкостях, газах и твердых телах, рассматриваемых как сплошные среды с разными характеристиками упругости. В ней систематизированы вопросы, имеющие непосредственное отнощение к специфике ультразвука возможности генерирования направленных пучков плоских волн, высокой интенсивности ультразвукового излучения и т. д. В связи с этим основное внимание в книге уделено различным аспектам распространения плоских волн их общим характеристикам, затуханию, рассеянию на неоднородностях, отражению, преломлению, прохождению через слои, интерференции, дифракции, анализу нелинейных явлений, пондеромоторных сил, краевых и других эффектов в ограниченных пучках. Рассматриваются также сферические волны, которые формируются при пульсационных колебаниях сферических тел, в дальней зоне излучателей малых размеров, в ультразвуковых фокусирующих системах. Большинство из этих вопросов обсуждается применительно к продольным волнам для сред, обладающих объемной упругостью, а для других типов волн, в частности для сдвиговых волн в жидкостях и твердых телах, дополнительно рассматриваются те вопросы, которые составляют их специфику. К ним относятся граничные и нелинейные эффекты в твердых телах, трансформация волн, их дисперсия, поверхностные волны, соотношения между скоростями звука и модулями упругости в кристаллах, в том числе в пьезоэлектриках.  [c.2]

В качестве основной связанной задачи термоупругости рассматривается распространение плоских гармонических волн расширения в неограниченноти сплошном теле. Здесь для модифицированной под влиянием тепла упругой волны приводятся соотношения, выражающие изменение ее фазовой скорости, затухание амплитуды и относительное рассеяние энергии.  [c.10]

Проделанный выше переход от среднего напряжения по площадке к напряжению в точке связан с воображаемым процессом уменьшения размеров площадки ДР до нуля, необходимым для п )и-менения анализа бесконечно малых. Законность и обоснованность такого формального процесса, как уже указывалось выше, долгое время были под сомнением и являлись предметом дискуссий среди ученых однако приложение полученных основных уравнений теории упругости к решению задач физики довольно быстро показало эффективность разработанных Методов и дало ряд замечательных результатов, подтвержденных опытом это относится прежде всего к области изучения колебаний и распространения волн (например, звуковых) в упругих телах некоторые более простые задачи этого рода освещены в главах IV и IX настоящей книги. Середина XIX века была особенно богата достижениями в смысле развития теории упругости и получения решений задач, важных для физики и техники здесь главную роль сыгралк работы крупнейшего французского исследователя Сен-Венана и его учеников. В этих условиях постепенно исчезли сомнения в физической обоснованности метода теории упругости, оперирующего как бы с непрерывной, сплошной средой с этой точки зрения иногда говорят, что теория упругости основывается на гипотезе сплошного строения твердых тел. При этом, конечно, нельзя забывать, что такая гипотеза является только рабочей гипотезой-, она диктуется принятым математическим методом исследования и не вторгается в те области физики, которые непосредственно занимаются вопросами строения тел.  [c.12]

Понятия о колебательных движениях и волнах сформулировались в начале XIX в. В то время получены линейные решения уравнений теоретической механики и гидродинамики, описывающие движения планет и волн на воде. Несколько позднее благодаря наблюдательности Д. С. Рассела [186], теоретическим исследованиям Б. Римана [97, 99] и других исследователей сформировалось понятие о нелинейных волнах. Однако, если линейные колебания и волны были весьма полно изучены в XIX в., что нашло отражение в фундаментальном курсе Д. Рэлея [177], то этого нельзя сказать о нелинейных колебаниях. Сознание того, что нелинейные уравнения содержат в себе качественно новую информацию об окружающем мире пришло после разработки А. Пуанкаре новых методов их изучения. Созданные им и другими исследователями методы интегрирования нелинейных уравнений нашли широкое применение в радиофизике [6] и механике твердых тел [73]. Более медленно нелинейные понятия и подходы входили в механику жидкости и твердого деформируемого тела. Показательно, что первые монографии, посвященные нелинейному поведению деформируемых систем, были опубликованы на-рубеже первой половины XX в. [39, 72, 107, 153]. В это же время резко возрос интерес к нелинейным колебаниям и волнам в различных сплошных средах. Сформировались нелинейная оптика, нелинейная акустика [97, 173], теория ударных волн [9, 198] и другие нелинейные науки [184, 195, 207]. В них рассматриваются обычно закономерности формоизменения волн, взаимодействия их друг с другом и физическими полями в безграничных средах. Нелинейные волны в ограниченных средах исследованы в значительно меньшей степени, несмотря на то что они интересны для приложений. В последнем случае важнейшее значение приобретает проблема формирования волн в среде в результате силового, кинематического, теплового или ударного нагружения ее границ. Сложность проблемы связана с необходимостью учета физических явлений, которые обычно не проявляют себя вдали от границ, таких как плавление, испарение и разрушение среды, а также взаимодействия соприкасающихся сред. В монографии рассмотрен широкий круг задач генерации и распространения нелинейных волн давления, деформаций, напряжений в ограниченных неоднородных сплошных средах. Большое внимание уделено динамическому разрушению и испарению жидких и твердых сред вблизи границ, модельным построениям для адекватного математического описания этих процессов. Анализируется влияние на них взаимодействия соприкасающихся сред, а также механических и тепловых явлений, происходящих в объемах, прилегающих к границам.  [c.3]


ГРУППОВАЯ СКОРОСТЬ - - скорость огибающей профиля квазимопо-хроматич. волны. Г. с.— обобщение понятия скорости, связанное с различием между явлениями распространения волн и движением материальных тел. Чтобы говорить о скорости к.-л. объекта, необходимо иметь возможность отождествлять его в разные моменты времени. Отождествление тел или частиц тел возможно всегда но бегущая волна связана в разные моменты времени с различными точками среды, и поэтому для неё отождествление хможет относиться только к форме ( профилю ) волны. Если форма волны прп распространении сохраняется (волны в струне, упругие волны малой амплитуды в сплошных средах), то отождествление возможно (рис. а). Если же профиль меняет свою форму так, что отождествить на нём соответственные точки в разные моменты времени невозможно (напр., изгибные волны в стержне, рис. б), то понятие скорости для такой волны теряет смысл.  [c.97]

Известны различные формулировки задачи о распространении волны разрушения (волны дробления) в упругом хрупком теле [65- 67]. Каждый из предложенных вариантов теории такого процесса основан на какой-либо гипотезе, например, о скорости волны разрушения [14, 66, 67], об интенсивности упругого предвестника [22] или об энергии разрушения [91, 107]. Введение дополнительного соотношения необходимо для замыкания системы уравнений динамики сплошной упруго-хрупкой среды. Однако без привлечения данных о структуре фронта разрушения подобное соотношение нельзя обосновать. Это обстоятельство отличает волны разрушения от обычных нелинейных волк, макропараметры которых определяются независимо от структуры фронта [107].  [c.249]

Классические модели сплошных поглощающих сред были сформированы во второй половине XIX века. В их основе лежит механизм вязких потерь, отсюда и сложившаяся терминология. Позднее эти модели были переосмыслены с позиций формализма линейных систем были также предложены другие механизмы поглощения - упругое последействие (Больцман, в сейсмических приложениях - В. Б. Дерягин и др.), тепловые потери, диссипация упругой энергии на молекулярном уровне (Г. И. Гуревич), и другие. Однако эти теории не смогли дать более полного объяснения многочисленным экспериментальным данным по сравнению с классическими моделями Кельвина и Фойгта (1885, 1890), моделью Максвелла (1865) и моделью стандартного линейного тела. Поэтому именно эти модели и будут рассмотрены в качестве сплошных изотропных неупругих сред. При этом, если в среде и допускаются флюидонасыщенные поры, то, как и в случае аппроксимации моделью сплошной среды пористых идеально-упругих сред, считается, что при распространении волн флюид не смещается относительно твердого скелета, а упругими свойствами среды считаются осредненные свойства агрегата в целом.  [c.109]

ЛИНЁЙНЫЕ СИСТЕМЫ — и тe ш, процессы в к-рых удовлетворяют суперпозиции принципу и описываются линейными ур-ниями. Л. с. обычно является идеализацией реальной системы. Упрощения могут относиться как к параметрам, характеризующим систему, так и к процессам (движениям) в ней. Напр., в случае заряж. частицы в потенциальной яме система линейна, когда яма параболическая, а движение нере-лятивистское, т. е. когда масса частицы не зависит от её скорости. К Л. с. относятся все виды сплошных сред (газ, жидкость, твёрдое тело, плазма) при распространении в них волновых возмущений малой амплитуды, когда параметры, характеризующие эти среды (плотность, упругость, проводимость, диэлект-рич. и магн. проницаемости и т. д.), можно считать постоянными, в том или ином приближении не зависящими от интенсивности волн. Упрощение системы, приводящее её к Л. с., называется линеаризацией.  [c.585]


Смотреть страницы где упоминается термин Распространение волн в сплошных телах : [c.10]    [c.6]    [c.315]    [c.5]    [c.501]   
Теория упругости (1937) -- [ c.416 ]



ПОИСК



Волны распространение

Распространение волн по поверхности упругого сплошного тела

Тело сплошное



© 2025 Mash-xxl.info Реклама на сайте