Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ультразвук скорость

Ускорение растворения стали в кислоте под действием ультразвука было показано также А. П. Капустиным и М. А. Фоминой [25]. На рис. 74 показано изменение скорости растворения стали со временем в 1 N растворе серной кислоты без ультразвука (кривая 1) и в ультразвуковом поле (частота 60 ООО гц, интенсивность 4 вт/см ). Из рисунка видно, что под влиянием ультразвука скорость растворения возрастает в несколько раз. Скорость растворения стали меняется от интенсивности ультразвукового поля. При малой интенсивности ультразвук не влияет иа растворение, а при некотором значении начинается резкое ускорение растворения, возрастающее по. мере увеличения интенсивности ультразвукового поля до определенного предела.  [c.142]


Ультразвуковая обработка металлов в жидком состоянии и во время кристаллизации приводит и к изменению характера температурного поля. Возникновение акустических потоков в расплаве под действием ультразвука связано с потерей энергии в расплаве. Эти потери зависят от интенсивности ультразвука и акустических свойств среды. Акустические потоки вызывают интенсивное перемешивание расплава, выравнивание температуры и интенсификацию конвективной диффузии. При выравнивании температуры расплава увеличивается теплообмен со стенками сосуда и окружающей средой, в результате чего увеличивается скорость охлаждения. Установлено, например, что под действием ультразвука скорость охлаждения расплава от температуры перегрева до температуры кристаллизации в центральной зоне слитка увеличивается примерно в 6 раз, а в зонах у стенок кокиля — лишь в 2 раза. Это ускорение охлаждения объясняется непрерывным выравниванием температуры отдельных зон.  [c.46]

Значительный эффект достигнут и при растворении вольфрама в стали, чугуне и никеле. При достаточной интенсивности ультразвука скорость растворения увеличивается более чем в 4 раза. Подобные результаты получены для сплавов Си—5Ь А1-- РЬ и для дисперсных сплавов алюминия и двуокиси алюминия.  [c.47]

Ультразвуковой метод определения сварочных остаточных напряжений основан на зависимости скорости распространения ультразвуковой волны в металлах от напряженного состояния в них. Измеряют скорости распространения ультразвука на отдельном участке металла до сварки и после сварки, и по изменению скорости судят о значении остаточного напряжения. При измерении остаточных напряжений в шве и околошовной зоне неоднородность свойств может приводить к погрешностям результатов. Положительным свойством данного метода, так же как магнитоупругого, следует считать мобильность проведения экспериментов, не требующих больших подготовительных работ.  [c.424]

Метод акустического измерения скорости ультразвука  [c.340]

Для решения проблемы оценки уровня накопления повреждений может применяться метод акустического измерения скорости ультразвука и ее взаимосвязи со структурными изменениями.  [c.340]


Применению ультразвуков в воде благоприятствует еще одно обстоятельство. Как мы видели ( 169), средняя мощность, излучаемая колеблющейся пластинкой, при данной амплитуде ее скорости пропорциональна рс. А для воды рс в несколько тысяч раз больше, чем для воздуха, так что ультраакустический излучатель при прочих равных условиях излучает в воде гораздо лучше, чем в воздухе. Пьезокварцевые излучатели в воде могут излучать очень значительную мощность, Так, кварцевая пластинка, колеблющаяся с амплитудой смещения 10" см и угловой частотой 0 = 3 10 , имеет амплитуду скорости = 30 слг/сек. Так как для воды с 1500 м/сек = 1,5-10 см/сек, то пластинка в 1 см излучает при этом мощность 7 ет. В воздухе при тех же условиях пластинка излучала бы около 2 милливатт.  [c.745]

Ультразвуки впервые были практически применены в эхолоте для измерения глубины моря. В дне судна помещаются ультразвуковой излучатель, посылающий короткие цуги колебаний длительностью около 0,001 сек, и приемник ультразвуков (рис. 476). Отражаясь от дна моря, ультразвуки через некоторое время достигают приемника. По промежутку времени, прошедшему между отправлением сигнала и его возвращением, зная скорость распространения ультразвука, определяют расстояние до дна моря.  [c.746]

Эхолот — прибор, предназначенный для измерения глубин моря или реки. Излучатель эхолота устанавливается на днище корабля так, чтобы пучок ультразвуковых волн был направлен вертикально вниз. Он излучает ультразвуковые волны отдельными короткими по времени импульсами, в которых благодаря высокой частоте содержится большое количество волн. Достигнув дна, импульс отражается от него в виде эха и приходит к приемнику,, расположенному рядом с излучателем. Регистрирующий прибор записывает на специальной ленте момент посылки импульса и момент его возвращения. Зная скорость распространения ультразвука в воде, по этим отметкам определяют глубину моря под кораблем.  [c.244]

Ультразвук применяют и для исследования свойств и структуры веществ. Большим преимуществом для этих целей ультразвуковых волн перед электромагнитными является значительно меньшая (на несколько порядков) скорость их распространения. Поэтому при равных частотах длина ультразвуковых волн существенно меньше.  [c.246]

Наиболее распространенный ультразвуковой метод. Он достаточно хорошо разработан, освоен и оснащен приборами. В основе ультразвукового метода лежит способность ультразвука распространяться в физических телах (н в первую очередь в металлах) с определенной скоростью и при возникновении каких-либо несплошностей больше длины волны ультразвука отражаться от их границы. По отраженному сигналу можно судить о наличии дефектов в металле и их величине (ультразвуковая дефектоскопия) или в отсутствие таковых о толщине металла, т. е. о развитии общей коррозии (ультразвуковая толщинометрия). Разработанные ультразвуковые приборы позволяют анализировать состояние металла толщиной до 100 мм с точностью около 0,1 мм.  [c.99]

Головная волна связана только с наличием границы раздела двух сред и распространяется в среде с большей скоростью ультразвука либо на свободной поверхности твердого тела.  [c.47]

Диэлектрическая проницаемость е — тензор со слабо отличающимися компонентами, поэтому его рассматриваем как скаляр. Модуль упругости Сд связан со скоростью ультразвука с формулой  [c.62]

Ограничение чувствительности интерферометра связано с шумом фотоумножителя, соответствующим смещению поверхности зеркала на 5 10 м. Считаем, что регистрируемое смещение в 2 раза превосходит это значение, т. е. и = 10" м. Таким образом, чувствительность интерферометра при приеме в 100 раз меньше, чем при использовании пьезоэлектрического преобразователя. Кроме того, интерферометр — довольно сложное, громоздкое, чувствительное к вибрации устройство. В связи с этим он находит применение лишь в исследовательских целях, например, для точного измерения характеристик пьезопреобразователей в абсолютных единицах или скорости ультразвука в материалах.  [c.68]

При использовании стоячих волн возбуждают свободные или вынужденные колебания либо объекта контроля в целом (интегральные методы), либо его части (локальные методы). Свободные колебания возбуждают путем кратковременного внешнего воздействия на объект контроля, например, ударом, после чего он колеблется свободно. Вынужденные колебания предполагают постоянную связь колеблющегося объекта контроля с возбуждающим генератором, частоту которого изменяют. Информационными параметрами являются частоты свободных колебаний или резонансов вынужденных колебаний, которые несколько отличаются в связи с воздействием возбуждающего генератора. Эти частоты связаны с геометрическими параметрами изделий и скоростью распространения в них ультразвука. Иногда измеряют величины, связанные с затуханием колебаний в объекте контроля амплитуды свободных или резонансных колебаний, добротность колебаний, ширину резонансного пика.  [c.98]


Из рассмотренных акустических методов контроля наибольшее практическое применение находит эхо-метод им проверяют до 90 % всех объектов. Применяя волны различных типов, с его помощью решают задачи дефектоскопии поковок, литья, сварных соединений, многих неметаллических материалов. Эхо-метод используют также для измерения геометрических размеров изделий. Фиксируя время прихода донного сигнала и зная скорость ультразвука в материале, определяют толщину изделия при одностороннем доступе. Если толщина изделия известна, то по донному сигналу измеряют скорость, оценивают затухание ультразвука, а во этим параметрам определяют физико-механические свойства материалов.  [c.100]

Теневой метод применяют вместо эхо-метода при исследовании физико-механических свойств материалов с большими коэффициентами затухания и рассеяния акустических волн, например, при контроле прочности бетона по скорости ультразвука. Для этой цели применяют не только теневой метод, но и (в более общем виде) метод прохождения. Например, излучатель и приемник располагают с одной стороны изделия на одной поверхности и измеряют время и амплитуду сквозного сигнала головной или поверхностной волны.  [c.102]

При теоретическом анализе используют модели дефектов в виде отражателей правильной геометрической формы (сфера, диск, цилиндр). В экспериментах точно воспроизвести расчетные модели в натуральном образце удается далеко не всегда. Например, практически невозможно выполнить модель дефекта в виде гонкого диска в толще образца. Поэтому при измерениях используют искусственные дефекты в виде полостей правильной геометрической формы с выходом на поверхность образца. Широко применяют также жидкостное моделирование, основанное на подобии процессов распространения продольных звуковых волн в твердом теле и в жидкости (коэффициент подобия где , Сда — скорости ультразвука в металле и жидкости). Основное преимущество этого способа анализа в том, что исследование можно проводить на искусственных дефектах, идентичных расчетной модели.  [c.104]

В правую часть этого неравенства входят постоянные величины, ограничивающие чувствительность. Согласно (2.22) при малых толщинах и низких частотах ультразвука чувствительность дефектоскопа при временном теневом методе становится больше, чем при обычном теневом методе, поэтому его применение предпочтительно при контроле крупнозернистых металлов. Чувствительность при временном теневом методе существенно снижается ввиду непостоянства скорости ультразвука в изделии.  [c.120]

Ширина полосы пропускания и равномерность АЧХ являются важными характеристиками пьезопреобразователей. Чем шире полоса пропускания, тем выше разрешающая способность УЗ-приборов, меньше мертвая зона, ниже погрешность определения толщины изделия, координат, скорости ультразвука. Для некоторых приборов, например ультразвуковых спектроскопов, широкая и равномерная полоса пропускания частот преобразователей является определяющим фактором качества контроля. Анализ работы преобразователей с плоскопараллельными пьезоэлементами и слоями показывает, что для них характерны ограниченная, весьма узкая полоса пропускания и продолжительный переходный процесс. Это обусловлено в основном двумя причинами многократными отражениями УЗ-колебаний в конструктивных элементах преобразователя и наличием ярко выраженных резонансных свойств пьезоэлемента. С целью расширения полосы пропускания следует применять преобразователи с неоднородным электрическим полем, физические свойства пьезоэлементов которых изменяются по толщине.  [c.161]

Передаточная функция достигает максимума на частоте свободных колебаний кольца, когда d = Я, /2 = j 2fi) (с — скорость ультразвука в пьезоматериале). С этой частотой совпадает резонансная частота электрического контура. Явление вторичного пьезоэффекта учитывать не будем.  [c.166]

Наибольшее применение в ультразвуковой дефектоскопии нашли фокусирующие устройства в виде линз. На рис. 3.29 показан фокусирующий преобразователь ИЦ-ЗБ [39], предназначенный для контроля труб в контактном варианте. Протектор преобразователя выполнен в виде цилиндрической линзы из алюминия, скорость поперечных волн в котором больше скорости продольных волн в плексигласе, поэтому вогнутая форма протектора соответствует собирающей линзе. Многократные отражения ультразвука в протекторе приводят к концентрации не вошедшей в изделие энергии у боковых границ призмы и протектора, где она гасится.  [c.172]

Испытательные образцы согласно нормативным требованиям должны быть идентичны изделию в том смысле, что размеры и материал образцов выбирают по чертежам изделия. Однако допускаемые отклонения размеров изделия от номинальных могут существенно влиять на результаты контроля. Отличие скорости ультразвука в материалах образца и изделия, неравномерность распределения скорости вдоль траектории УЗ-волн (при сварке разнородных материалов, при контроле биметалла), дисперсия  [c.204]

В ряде работ [6,15,39] отмечалось, что при увеличении интенсивности ультразвука скорость эккартовского потока перестает быть пропорциональной интенсивности. Было выполнено [34] и более подробное исследование этого явления наблюдалось постепенное изменение скорости потока в некоторой точке звукового поля по мере повышения интенсивности звука. На рис. 22 (кривая 1) показана зависимость скорости потока в воде на расстоянии 40 см от источника звука частоты 1,2 Мгц от амплитуды звукового давления вблизи источника. При звуковом давлении р 7 атм на расстоянии 40 см формируется пилообразная волна. Как видно из рисунка, при этом изменяется и характер зависимости скорости потока от интенсивности. В гл. 1 было показано, что теория Эккарта применима при малых акустических числах Рейнольдса, поэтому отконения от нее связаны не с турбулизацией акустического течения, как это предполагалось в работах [6, 39], а с искажением формы волны и неприменимостью теории при этих условия  [c.125]


Хедуолл, Эквалл и Ионссон [818—820] исследовали влияние ультразвука на скорость потускнения металлов. В хорошо отполированном металлическом стержне при помощи кварцевого вибратора возбуждались колебания с частотой 360 кгц, а вызывающий реакцию газ в нужной концентрации и с постоянной скоростью продувался мимо поверхности стержня, расположенной так, что ее удобно было наблюдать. При этом было обнаружено, что под действием ультразвука скорость образования потускневшего слоя существенно повышается. При колебаниях стержня вследствие различий в состояниях самого стержня и слоя, в котором происходит реакция, в слое возникают разрывы и растяжения благодаря этому оказываются открытыми новые участки поверхности металла и перенос вещества облегчается. До сих пор исследованию подвергались медь в потоках паров иода и сероводорода при комнатной температуре и железо в потоке кислорода при температуре 300°С.  [c.518]

Отраженные от дефекта импульсвл упругих колебаний подаются на пьезопластину и преобразуются в ней в электросигналы. Эти колебания усиливаются в усилителе, затем подаются кл экран электронно-лучевой трубки. При развертке расстояние от зондирующего импульса до принятого сигнала пропорционально времени прохождения импульса от пьезонластипы до дефекта и обратно. По числовому значению скорости и времени прохождения ультразвука можно определить координаты дефекта. Отклонение луча на электронно-лучевой трубке в вертикальном направлении характеризует амплитуду с сигнала и пропорционально значению размера дефекта.  [c.132]

Для измерения скорости ультразвука используется толщиномер, такой как 36DL PLUS ФИРМЫ Panametri s , измеряющий толщины стенок деталей. В толщиномере производится автоматическое измерение времени прохождения между противоположными поверхностями стенки детали. Это время прямо пропорционально скорости звука в материале. При этом предполагается, что материал является однородным и скорость звука в нем известна. Измеренное значение времени пробега t умножается на половину скорости звука с (т.к. волна проходит расстояние, равное двойной толщине)  [c.341]

В зависимости от назначения ультразвуковые приборы, как и другие приборы неразрушающего контроля, подразделяются на дефектоскопы для поиска и обнаружения дефектов, толщиномеры для измерения толщины стенок при одностороннем доступе к изделию или измерения толщины покрытий и слоев, анализаторы физико-механических свойств материала, служащие для измер)сния величины зерна, графитовых включений в чугунах, напряженного состояния объекта, упругих харс1ктеристик материала и остальных свойств, которые зависят от скорости прохождения ультразвука.  [c.179]

Призму изготовляют обычно из материала с небольшой скоростью звука (оргстекло, капролон, поликарбонат, полиамидоимид, деклон, эпоксидные компаунды), что позволяет при относительно небольших углах падения р получать углы преломления а до 90°. Высокое затухание ультразвука в призме позволяет обеспечить ослабление волны, которое увеличивается в результате многократных отражений. Для улучшения этого эффекта в призме часто предусматривается ловушка,  [c.206]

Ультразвуковые интроскопы, разработанные для медицинской диагностики, могут найти применение и для промышленного контроля. Так, прибор УИ-25ЭЦ (табл. 23) можно без переделок применять для контроля изделий из материалов, скорость распространения ультразвука в которых порядка 1500 м/с. Это изделия из материалов типа резин, пластмасс. Максимальный размер визуализируемой области 300 X 300 мм (при с =  [c.271]

Отражение и прохождение ультразвука. Способность ультразвука отражаться от границ раздела сред с разными акустическими сопротивлениями характеризуется коэффициентом отражения R, представляюихим собой отиошение амплитуд давления в отраженной и падающей волнах R = Ротр1Ро- Именно на этом свойстве основано выявление дефектов при ультразвуковом контроле. При решении задачи отражения ультразвука эффективно воспользоваться понятием нормального импеданса, представляющего собой отношение акустического давления к нормальной составляющей колебательной скорости, за счет которой осуществляется перенос энергии из одной среды в другую  [c.25]

Рис. 1.29. Схемы образования и распространения головных и боковых волн от излучателя до приемника ультразвука при различном соотношении скоростей волн ( ijL, ir — скорости продольных и поперечных волн в первой среде Рис. 1.29. <a href="/info/771132">Схемы образования</a> и распространения головных и <a href="/info/246778">боковых волн</a> от излучателя до <a href="/info/385718">приемника ультразвука</a> при <a href="/info/515135">различном соотношении</a> <a href="/info/14391">скоростей волн</a> ( ijL, ir — скорости продольных и <a href="/info/12457">поперечных волн</a> в первой среде
Основная задача анализа акустического тракта — оценка степени ослабления излученного (зондирующего) сигнала, пришедшего на приемник. На пути к приемнику излученный сигнал ослабляется по ряду причин. Наиболее существенно на амплитуду результирующего сигнала влияют акустические свойства контролируемого материала (вкорость ультразвука, дисперсия скорости, затухание), определяющие его прозрачность для ультразвука геометрические параметры изделия (кривизна, параметры шероховатости поверхности, через которую вводится ультразвук), влияющие прежде всего через изменение прозрачности контактного слоя, а также габаритные размеры изделия в зоне прозвучивания свойства и геометрия акустической задержки, определяющие степень акустического согласования пары преобразователь—изделие электроакустические параметры излучателя и приемника (частота колебаний, длительность импульсов, материалы пьезоэлемента и переходных слоев) ориентация пьезоэлемента, его геометрические размеры размеры, ориентация, конфигурация, параметры шероховатости и материал (шлак, металл, газ) дефекта взаимное расположение излучателя, дефекта и приемника траектория сканирования.  [c.103]

Рефракторы — линзы, преобразующие плоскую волну в сходящуюся (рис. 3.28, б). Линзы делают вогнутыми (ускоряющими) и выпуклыми (замедляющими) в зависимости от соотношения скоростей ультразвука в среде Сс и материале линзы Сд, которое называется показателем преломления п = сс1с . Для фокусировки ультразвука при п < 1 линза должна быть вогнутой, при п > 1  [c.171]

Настройка скорости развертки (рис. 5.3) заключается в выборе оптимального масштаба видимой на экране части временной оси электротю-лучевой трубки (ЭЛТ). Масштаб должен обеспечивать появление сигналов от дефектов в пределах экрана дефектоскопа. Скорость развертки устанавливают такой, чтобы рабочий участок развертки ЭЛТ занимал большую часть экрана. Горизонтальная ось экрана после настройки является по существу выпрямленной траекторией луча в масштабе 2/ тах/ э, где г -лу. — путь ультразвука до максимально удаленной точки контролируемого сечения Хд — размер рабочего участка развертки, который в пределе равен горизонтальному габаритному размеру экрана. Рабочий участок развертки можно легко проградуировать в значениях координат дефекта с учетом соотношений h г o.s ад л = г sin 0. где г — расстояние по лучу до дефекта с координатами h, X. Такой способ наиболее целесообразен для ремонтопригодных изделий небольшой толщины (до 20 мм), когда не требуется высокой точности определения координат дефектов.  [c.204]


Принцип совмещения шкал основан на однозначной и стабильной связи между скоростями поперечных j и продольных С воли для данного металла. Задача состоит в том, чтобы найти порядковый номер донного сигнала продольной волны, появляющегося на развертке ЭЛТ точно в том же месте, что и эхо-сигнал А поперечной волны от отражателя, расположенного па заданной глубине (см. схему измерений на рис. 5.5). Из глубины h эхо-сигнал А приходит через время Т === 2/i/( f os а,,) + 2rj s время прихода на приемник и-го донного сигнала х, = 2nHl i, где Ps и Сз — средний путь и скорость ультразвука в призме (задержке) преобразователя. Тогда условие совпадения на развертке эхо-сигналов Л и Лоо (т, е. Tj = Т ), являющееся общим выражением для расчета совмещенных координатных шкал, можно записать в виде  [c.206]


Смотреть страницы где упоминается термин Ультразвук скорость : [c.295]    [c.465]    [c.120]    [c.352]    [c.288]    [c.167]    [c.206]    [c.207]    [c.222]    [c.271]    [c.282]    [c.23]    [c.37]    [c.351]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.307 ]

Молекулярное рассеяние света (1965) -- [ c.91 , c.295 ]



ПОИСК



Измерение поглощения ультразвука по скорости акустического ветра

Измерение поглощения ультразвука по скорости эккартовского течения

Измерение скоростей потоков при помощи ультразвука

Измерение скорости ультразвука и его поглощения

Метод акустического измерения скорости ультразвука

Оруджева, X. М. Халилов Исследование скорости распространения ультразвука и расчет упругих параметров в монокристалле теллура при высоких температурах

Оценка связи прочности и скорости ультразвука в стеклопластике Способы оценки связи

ПРИМЕНЕНИЕ УЛЬТРАЗВУКА - Измерение скорости и поглощения звука в жидкостях и газах

Связь между модулями упругости и скоростями распространения ультразвука в кристаллах

Скорость звука * (ультразвука)

Скорость звука * (ультразвука) в стержнях

Скорость звука * (ультразвука) локальная

Скорость звука * (ультразвука) местная

Скорость ультразвука в негидрогенезированных

Способы контроля по скорости ультразвука

Статистическая связь между прочностью при сжатии и скоростью ультразвука в стекловолокните

Сушка с помощью ультразвука колебательной скорости

Температурный градиент скорости ультразвука для нефти и нефтепродуктов

Ультразвук

Устройства для измерения скорости звука в газах при помощи ультразвука

Устройства для измерения скорости ультразвука в жидкостях

Фотографирование ультразвуковых волн. Дифракция света . Измерение скорости и поглощения ультразвука



© 2025 Mash-xxl.info Реклама на сайте