Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения относительного канонические

Как уже отмечалось, уравнения Лагранжа представляют собой систему 5 дифференциальных уравнений второго порядка относительно 5 обобщенных координат д как функций времени. Этим уравнениям можно сопоставить эквивалентную систему 2з уравнений первого порядка, где в качестве неизвестных взяты 2в функций времени 5 обобщенных координат и обобщенных импульсов р. Переменные д, р называются каноническими, а соответствующая система 2з уравнений движения называется каноническими уравнениями Гамильтона.  [c.384]


Поверхности нулевой относительной скорости. Используя уравнения движения в канонических единицах (6.2.6), можно записать интеграл Якоби в этих единицах  [c.221]

Полученные таким способом уравнения называются каноническими уравнениями движения системы, так как они решены относительно старших (первых) производных от искомых функций. Этим объясняется также введение термина канонические переменные.  [c.147]

Последний интеграл является граничным членом, не зависящим от способа варьирования, поскольку варьирование производится при фиксированных граничных значениях. Следовательно, хотя мы и изменили канонический интеграл, это изменение свелось лишь к добавлению некоторой константы. Поэтому обращение в нуль вариации канонического интеграла, записанного в первоначальных переменных, гарантирует обращение в нуль вариации канонического интеграла в новых переменных. Это означает, что канонические уравнения движения остаются инвариантными относительно преобразования (7.4.1).  [c.238]

Предположим, что мы сумели найти такое преобразование. Тогда канонические уравнения в новой системе координат легко проинтегрировать. Поскольку функция Гамильтона Н инвариантна относительно канонического преобразования, в новой системе функция Гамильтона Н равна Qn- Это означает, что в новой системе координат все переменные циклические - и можно произвести полное интегрирование уравнений движения.  [c.266]

Благодаря наличию этих трех интегралов согласно п. 12 можно понизить число степеней свободы канонической системы на три или, что одно и то же, понизить число переменных на шесть. Вследствие этого мы придем к так называемой канонической форме Пуанкаре для уравнений относительного движения (относительно центрального тела) в задаче и -f-1 тел. Мы знаем (п. 42), что когда проинтегрированы эти уравнения, то игнорируемые координаты Sq i oi центрального тела определяются простыми квадратурами.  [c.317]

Гамильтон предложил записывать уравнения движения в переменных Qi, pi t. В этих переменных уравнения Лагранжа (1) переходят в разрешенную относительно производных систему 2п уравнений первого порядка, имеющую замечательно симметричную форму записи. Эти уравнения называют уравнениями Гамильтона (или каноническими уравнениями). Переменные qi и р (г = 1, 2,. .., п) называются канонически сопряженными.  [c.284]


Рассмотрим получение вариационно-матричным способом канонической системы дифференциальных уравнений для решения задач устойчивости н колебаний. При получении разрешающих уравнений будем считать, что в исходном невозмущенном состоянии оболочка напряжена, но не деформирована. Исходное напряженное состояние определяется решением- задачи статики в линейной постановке. При составлении уравнений движения в окрестности исходного состояния будем учитывать начальное напряженное состояние. В деформационных соотношениях кроме линейных составляющих будем учитывать нелинейные слагаемые, связанные с дополнительными углами поворота нормалей. При решении задач рассмотрим только осесимметричное начальное напряженное состояние. Будем считать, что действующие на конструкцию внешние нагрузки при движении системы не изменяются ни по величине, ни по направлению. В целом систему, включая внешние нагрузки и условия связи, будем считать консервативной. Исследование движения системы относительно начального состояния проведем без учета демпфирующих свойств.  [c.156]

При исследовании устойчивости механических систем, описываемых каноническими уравнениями движения (в частности с гамильтонианом, периоди-134 чески зависящим от времени), существенную роль играет орбитальная устойчивость Применение предложенного А. Н. Колмогоровым метода теории возмущений позволило получить ряд результатов относительно устойчивости и неустойчивости консервативных систем, близких к интегрируемым для бесконечного промежутка времени. При этом выяснилось существенное отличие систем с числом степеней свободы ге 3 от систем с одной или двумя степенями свободы. Так называемые условно-периодические движения, соответствующие интегрируемым системам с п степенями свободы, образуют п-мерные инвариантные многообразия типа тора. Методом Колмогорова доказывается грубость таких торов — они мало видоизменяются, т. е. устойчивы при достаточно малых возмущениях. При и = 1 или п = 2 в фазовом пространстве 2п измерений устойчивые торы лежат в многообразиях 2п — 1 измерений, которые выделяются требованием постоянства энергии, как соосные торы (и = 2) или концентрические кривые п = 1). Поэтому не только траектории, первоначально лежащие на инвариантных торах, но и траектории, находящиеся между ними, остаются между этими торами. В этом случае существование торов гарантирует устойчивость системы. При га >> 3 гг-мерные торы вложены в пространство 2п — 1 измерений, которое они делить уже не могут, т. е. щели между торами сообщаются друг с другом. Поэтому траектория, начинающаяся между торами, несмотря на их устойчивость по отношению к возмущениям, может, извиваясь между торами, уйти на любое расстояние от них, т,. е. оказаться неустойчивой. Примеры, иллюстрирующие эти общие положения, приведены в докладе  [c.134]

Ограничение содержания аналитической динамики изучением методов решения уравнений движения, нахождением инвариантных соотношений и постоянных движения. Эта тенденция сложилась потому, что весьма эффективными стали методы получения первых интегралов при известном полном интеграле соответствующим образом составленного уравнения в частных производных, например, уравнения Гамильтона—Якоби. К тому же условия каноничности преобразований, составленные для произвольно выбранного гамильтониана преобразованной системы могут привести к интегрируемым уравнениям относительно производящей функции, с помощью которой определяются в дальнейшем первые интегралы канонических уравнений движения. Усилению этой тенденции способствует, причем весьма действенно, всевозрастающее внедрение ЭВМ в учебный процесс.  [c.43]

Иначе говоря, спутник совершает регулярную прецессию с почти постоянной угловой скоростью (5.4.10) вокруг постоянного по величине вектора кинетического момента, направление которого меняется в пространстве согласно уравнениям (5.4.9). Видим, что задача об эволюции движения в этом случае свелась к исследованию системы (5.4.9) всего двух уравнений, легко приводимых к каноническому виду. Отметим, что осреднение правых частей уравнений движения (5.4.3) оказалось эквивалентным осреднению силовой функции. Уравнения (5,4.9) инвариантны относительно преобразования р, а >0, X (смысл углов 0, Я — см. 1 главы I)  [c.186]


Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Поскольку момент внешних сил относительно центра инерции равен нулю (т =0), вектор К остается неизменным по величине и направлению. Это следует из теоремы об изменении момента количеств движения. Не ссылаясь на эту теорему, а используя только канонические уравнения движения (11), (14) и остающееся уравнение  [c.589]

Но гладкой горизонтальной трубке (см. рисунок), вращающейся с постоянной угловой скоростью со вокруг вертикальной оси, может двигаться шарик массы т. Пренебрегая размерами шарика, составить и решить канонические уравнения его относительного движения.  [c.197]

Разрешая уравнения (6.62 ) относительно канонических переменных, ыы получим общее решение уравнений невозмущенного движения в виде  [c.319]

В первых параграфах этой главы мы изучали движения п малых масс относительно массы то, которая в теории движения больших планет представляет Солнце эти гелиоцентрические движения планет представляют наибольший интерес для практических приложений, но, как было уже отмечено в 4, не совсем удобны для теоретических исследований, так как гелиоцентрические уравнения движения не имеют канонической формы.  [c.704]

В 1.13—1.19 были приведены канонические формы уравнений абсолютного и относительного движения задачи п тел. Интегрирование канонических уравнений движения механической схемы с k степенями свободы тесно связано с интегрированием одного уравнения в частных производных, называемого уравнением Гамильтона — Якоби. Оно имеет вид  [c.318]

В 28 показано, что уравнения Лагранжа (28.11) инвариантны относительно точечного преобразования (28.17), связывающего любые два набора обобщенных координат системы д, Q. Разумеется, что при любом преобразовании (28.17) сохраняют свою форму и канонические уравнения движения (33.4). Однако уравнения Гамильтона допускают более широкий класс преобразований. Это связано с тем, что в методе Гамильтона роль независимых переменных наряду с обобщенными координатами выполняют и обобщенные импульсы р . Поэтому преобразования, сохраняющие форму канонических уравнений движения (33.4), относятся к классу преобразований  [c.198]

Сделаем замечание относительно уравнений движения для проекций. Рассмотрим канонически сопряженную пару переменных (р, д) и соответствующую им пару операторов (р, Уравнения движения для классических переменных (р, д) являются гамильтоновыми. Однако уравнения движения для средних (, <д>), вообще говоря, гамильтоновыми не являются. Исключение составляют системы с квадратичным по р, д гамильтонианом (например, линейный осциллятор). Приведем пример, иллюстрирующий сделанное утверждение [147].  [c.167]

Чтобы сделать необходимые выкладки возможно более простыми и прозрачными, приведем сначала уравнения движения, следуя Леви-Чивита [4], к канонической форме и определим затем каноническое преобразование, которое выполнит наше требование относительно д.  [c.54]

Канонические уравнения задачи о двух телах. В главе V были выведены диференциальные уравнения относительного движения в задаче о двух телах. Пусть т, и /п, две материальные точки. Их массы будем обозначать теми же буквами. Уравнения движения точки т, от-  [c.417]

Ирландский математик Гамильтон указал способ приведения дифференциальных уравнений Лагранжа к нормальному виду, дающий симметричные, т. е. одинаковые по форме уравнения относительно разных переменных, входящих в них. Эти дифференциальные уравнения получили название канонических дифференциальных уравнений движения. Они называются также уравнениями Гамильтона.  [c.202]

Вопросы, связанные с интегралами уравнений движения, будут полнее рассмотрены в следующей главе —для этой цели удобнее записывать уравнения в канонической форме. Здесь же, в заключение, мы рассмотрим способ получения интегралов, основанный на инвариантности функций Лагранжа относительно бесконечно малых преобразований переменных.  [c.233]


Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Бесконечно малые канонические преобразования. Константы движения и свойства симметрии. В связи с дальнейшим рассмотрением скобок Пуассона мы введем понятие бесконечно малых канонических преобразований. Как и в случае бесконечно малых поворотов, это будут такие преобразования, при которых переменные q, р изменяются на бесконечно малые величины. (Поэтому все расчеты мы будем производить лишь с точностью до членов первого порядка малости относительно этих величин.) Уравнения такого преобразования можно записать в виде  [c.285]

Далее, характеристическая функция этих канонических уравнений относительного движения определится, естественно, уравнением Н =  [c.317]

Гамильтон нредло5кил записывать уравнения движения в переменных qi. Pi, 1. И этих переменных уравнения Лагранжа (1) переходят в ра.зрешенную относительно производных систему 2п уран-нений первого норядка, имеющую замечательно симметричную с орму записи. Эти уравнения называют уравнениями Гамильтона Дилн каноническими уравнениями). Переменные qt и pi (i=l,2,...., п) называются канонически сопряженными.  [c.241]

Предстапление функции Гамильтона в виде (53) можно эффективно использовать для приближенного интегрирования канонических дифференциальных уравнений движения. Для этого пренебрежем в (53) членами Я, которые имеют более высокую степень относительно Ph, не кели функция И. Тогда Н — П. Замечательно, что система канонических уравнений с функцией Гамильтона /7 = Я (g pi,. . ., (7 р ) сразу интегрируется. Действительно положим Tk = qhPh- Тогда уравнения с функцией Гамильтона и запишутся в виде  [c.323]

Если речь идет о системе, находящейся под действием только внутренних сил, то, как уже упоминалось в п. 24, останутся в силе не только интегралы количеств движения, которые здесь будут полностью использованы для приведения (согласно п. 47) уравнений относительного движения к канонической форме Пуанкаре, но и интегралы результирующего момента количеств движения ЛГ= onst. Так как движение происходит в плоскости Stj, то достаточно выбрать в ней центр приведения, для того чтобы вектор АГ был перпендикулярен к этой плоскости, и нам останется только рассмотреть осевой интеграл моментов Я" = АГз = onst.  [c.330]

Как мы уже знаем (п. 38), общее решение канонической системы мы найдем из равенств (74 ), (74б) что касается аналитической природы переменных q, как функций от (и от и — 1 постоянных /j. Ха,. .., x j), то имеют место соображения, аналогичные тем, которые были приведены в предыдущем пункте. Здесь, как и раньше, успех применения способа разделения переменных тесно связан с существованием п квадратичных интегралов относительно q для ла-гранжевых уравнений движения эти интегралы определяются здесь уравнениями (129), в которые вместо должны быть под-  [c.344]

В этой главе прежде исего будет рассказано о том, как можно описать движение механической систел1ы с 5 стеиенями свободы в 25-мерном фазовом пространстве. Канонические уравнения выводятся из уравнений Лагранжа, Канонические преобразования обсуждаются весь 1а кратко, более подробно рассматриваются свойства скобок Пуассона, их инвариантность относительно канонических преобразований, их значение для отыскания интегралов движения и связь с бесконечно малыми контактными преобразованиями. Бегло рассмотрен случай движения заряженной частицы Б электромагнитном поле. В последнем параграфе принцип наименьшего действия выводится из вариационного принципа Гамильтона и обсуждается вопрос о том, как молено рассматривать время на равных правах со всеми остальными координатами q .  [c.123]

В 1951 г. А. А. Космодемьянский несколько видоизменил свой вывод основных теорем механики тела переменной массы по сравнению с 1946 г. Новые дифференциальные уравнения движения тела переменной массы были составлены для случаев, когда могло иметь место и относительное движение изменяющих масс по внутренним каналам тела. Кроме того, Космоде-242 мьянский вывел уравнения движения тела переменной массы в обобщенных координатах, которые по внешнему виду отличались от уравнений Лагранжа второго рода тем, что в правых частях к обычным обобщенным силам присоединялись реактивные силы. Там же он выводит канонические уравнения для тела переменной массы.  [c.242]

Обратимся к ограниченной задаче трех тел, рассмотренной в 5 гл. I. Предположим сначала, что масса Юпитера л равна нулю. Тогда в неподвижном пространстве астероид вращается вокруг Солнца единичной массы по кеплеровским-орбитам пусть орбиты — эллипсы. Удобно перейти от прямоугольных координат к каноническим элементам Делоне Ь,С,1,д если а и е—большая полуось и эксцентриситет орбиты, то Ь = у/а, С = - 0(1 — е ), д — долгота перигелия, I — угол, определяющий положение астероида на орбите, — эксцентрическая аномалия [173]. Оказывается, в новых координатах уравнения движения астероида будут каноническими с гамильтонианом Го = —1/ 2Ь ). При ф О полный гамильтониан Г разлагается в ряд по возрастающим степеням /х F = Fo -Ь fJ.Fi -Ь. .. В подвижной системе координат, связанной с Солнцем и Юпитером, кеплеровские орбиты вращаются с единичной угловой скоростью, поэтому Г згшисит от Ь,С,1 и д — 1. Положим Ух = Ь, у2 = С, Хх = I, Х2 = д — I и Н = Г — С. Функция Н теперь зависит лишь от х, у, причем относительно угловых переменных, Т1, Х2 она 2тг-периодична. В итоге уравнения движения астероида представлены в виде гамильтоновой системы  [c.186]

Уравнения (1.1) не являются инвариантными относительно произвольных координатных преобразований. Кроме того, при записи основных уравнений динамики твердого тела в виде (1.1) они теряют алгебраичность и приобретают особенности, не связанные с существом задачи (см. 4 п. 2). Прежде чем привести уравнения движения в более приемлемой форме, сохраняющей основные свойства канонической записи, остановимся на инвариантном изложении гамильтоновой механики.  [c.28]

Делоне рассматривает в качестве исходных канонические уравнения движения вида (4.3.22) относительно переменных Ь, О, Н, I, ц, Н. Эти переменные связаны с оскулирующими элементами орбиты Луны вокруг Земли большой полуосью а, эксцентриситетом е, наклоном г, долготой перигея л, долготой восходящего узла О, средней долготой в орбите Я по формулам  [c.447]

Уравнения (33.4) и есть искомые уравнения движения механической системы в переменных <7 и р, ксггорые называют уравнениями Гамильтона или каноническими уравнениями движения. Они представляют собой систему 2з дифференциальных уравнений первого порядка относительно 25 неизвестных функций (/) и р (/). Обращает на себя внимание симметрия уравнений (33.4) относительно переменных ц V. р.  [c.189]


Уравнения (5.145) — (5.148) могут быть названы каноническими только условно, так как лишь уравнения первой группы (5.145) и (5.146) решены относительно старшей производной и по форме совпадают с каноническими уравнениями движения механики дискретных систем. Поэтому, следуя терминологии гл. 4, будем называть эти уравнения квазикано-ническими.  [c.155]

Поэтому по теореме 4 гл. 1 уравнения (4) эквивалентны уравнениям Эйлера движения гироскопа, которые тем самым получили новый, до некоторой степени неожиданный, смысл простейшего аналога квазигеострофических уравнений гидродинамики бароклинной жидкости. Для сравнения напомним, что максимально упрощенные уравнения движения баротропной жидкости [154] также совпадают с уравнениями Эйлера, роль внутренних параметров в которых играют амплитуды трех различных мод поля скорости, тогда как в данном случае один из параметров является вертикальной составляющей относительного вихря, а два других ответственны за горизонтальную разность температур в двух взаимно перпендикулярных направлениях. В дальнейшем уравнения (5) будем называть геофизическим триплетом. Заменой Х = Х, Y = = KV2T , Z=KV iZ он приводится к каноническому виду с коэффициентами p = 2-i/, q = —2 i , r = 2 i/  [c.164]

Уравнения движения л-меркого твердого тела и симметризуемые системы. Интересным классом СГТ со многими интегралами движения являются уравнения Эйлера движения -мерных твердых тел. и уравнения входят в один класс с каноническим триплетом —уравнениями движения трехмерного твердого тела с закрепленной точкой dM/dt = [M, О]. Угловые скорости 5 ь евклидовом трехмерном пространстве можно отождествить с кососимметрическими матрицами порядка три, Q = = —О. Векторное произведение [М, Q] соответствует коммутатору матриц [М, 2] = Лi Q —Q JM. Вектор момента М в ортогональном базисе осей инерции тела записывается в виде М = A Q-j-Q А, где Л = (Л,,-) —диагональная матрица, > 0. Угловая скорость /г-мер-ного твердого тела задается кососимметрической матрицей О порядка п, момент М относительно тела равен Л Q + Q Л. Уравнения Эйлера движения п-мерного твердого тела имеют следующий вид  [c.305]

Канонические ур1внения задачи п трех телах (425) — 30. Алгебраические интегралы задачи о трех телах (426)—31. Уравнения движения в относительных координатах Якоби (427) —32. Вариация произвольных постоянных (431)— 33. Канонические элементы Делонэ (434)—  [c.16]

Аналитическую теорию движения спутника с учетом величин второго порядка малости можно найти, например, в работах М. Д. Кислика [5] и А. Страбла [17]. В обшем подходе к описанию возмущенного движения спутника А. Страбл следует, по существу, идее Ганзена разложения движения, хотя вывод уравнений движения им получен новым пзггем и в иной форме. Он при интегрировании уравнений применяет методы теории нелинейных колебаний, в частности метод асимптотической теории Н. М. Крылова— Н. Н. Боголюбова — Ю. Д. Митропольского [1, 7 им получен ряд интересных результатов. А. Страбл в своей работе не придерживается общепринятых в небесной механике классических определений, что, как нам кажется, не является вполне оправданным. Совершенно иначе подошел к задаче М. Д. Кислик. Положение спутника относительно основной системы он определяет эллиптическими координатами, а уравнения движения записывает в канонической форме интегрирование уравнений он проводит классическим методом Гамильтона — Якоби. Известно, что в большинстве случаев в задачах небесной механики уравнение Гамильтона — Якоби не интегрируется в квадратурах М. Д. Кислик, оставаясь в пределах точности до второго порядка малости включительно, преобразовал выражение земного потенциала и разрешил уравнение Гамильтона Якоби в квадратурах.  [c.10]

В этом смысле уравнения (20) представляют собой эквивалент уравнений Лагранжа (4). Уравнения (20) разрешены относительно старших производных и представлены в симметричной и удобной форме. Их называют каноническими уравнениями или уравнениями Гамилыпона для движения в потенциальных полях.  [c.263]

Записанный так интегральный инвариант Пуанкаре — Картана для консервативных систем отличается от интегрального И11ва-рианта в общем случае движения в потенциальном поле в трех отношениях во-первых, суммирование в первом члене ведется не от единицы до л, а от двух до п во-вторых, вместо гамильтониана Я в этом выражении стоит функция К, которая получилась, когда интеграл энергии (136) был разрешен относительно импульса Pi (см. выражение (138)) в-третьнх, роль t играет теперь <7i. Таким образом, воспользовавшись тем, что для консервативных и обобщенно консервативных систем гамильтониан не зависит явно от времени, мы исключили время из выражения интегрального инварианта Пуанкаре — Картана. Теперь совершенно так же, как в общих случаях движения систем в потенциальном поле из интегрального инварианта Пуанкаре — Картана следуют канонические уравнения Гамильтона, для консервативных и обобщенно консервативных систем из интегрального инварианта (139) следуют уравнения  [c.328]

Относительная краткость курса потребовала щателыюго отбора теоретического материала и примеров, поясняющих основные разделы курса. В курс включен ряд дополнительных разделов, В динамике достаточно полно изложена общая теория малых колебании механических систем с одной н двумя степенями свободы. В аналитическом динамике даны канонические уравнения Гамильтона и принцип Остроградского—Гамильтона. Расширена глава Динамика твердого тела с одной закрепленной точкой . Наряду с приближенной теорией гироскопа дополнительно изложена точная теория гироскопического момента при регулярной прецессии. В специальных главах изложены также элементы теории искусственных спутников и основные сведения по движению точки переменной массы.  [c.3]

Задача й-f-l тел каноническая форма Пуанкаре для уравнений ОТНОСИТЕЛЬНОГО движения. Значительно более важная иллюстрация общих рассуждений предыдухДего параграфа дается в задаче п- - тел (или вообще и-f-l свободных точек, находящихся исключительно под действием внутренних сил), когда стараются получить решение из интегралов количеств движения (или количества движения центра тяжести)  [c.315]


Смотреть страницы где упоминается термин Уравнения движения относительного канонические : [c.217]    [c.363]    [c.89]   
Аналитическая механика (1961) -- [ c.436 , c.529 ]



ПОИСК



Вид канонический

Движение относительное

Канонические уравнения уравнения канонические

Каноническое уравнение движени

Относительность движения

Уравнения движения канонические

Уравнения канонические

Уравнения относительно го движения

Уравнения относительного движения



© 2025 Mash-xxl.info Реклама на сайте