Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Величина вектора

Таким образом, в уравнении (4.22) неизвестны только величины векторов скоростей г св и V d, которые могут быть определены построением плана скоростей (рис. 4.17).  [c.80]

ПОСТОЯННОГО множителя, то величину вектора результирующего момента можно подсчитать, не вводя этого множителя.  [c.295]

Один и тот же стержень, закрепленный верхним концом (рис. 96), нагружается на свободном конце статически эквивалентными нагрузками, равнодействующие которых выражаются величиной вектора Р. Нагрузки приложены различными способами а — в виде сосредоточенной осевой силы б — в виде двух сил в — в виде распределенной нагрузки. Исследования показывают, что во всех случаях в поперечном сечении, удаленном на расстояние, превышающее в 1,5—2 раза его поперечные размеры, напряжения практически одинаковы. В сечениях же, расположенных близко от места приложения сил, величина напряжений и характер их распределения различны.  [c.87]


Разложение силы Р по направлениям стержней / и 2. Величины векторов  [c.51]

Воспользуемся теперь тем, что вектор кинетического момента остается неизменным не только по направлению, но и по величине. Величина вектора кинетического момента равна  [c.84]

МОЖНО перемещать любой вектор системы вдоль линии его действия. Чтобы показать это, рассмотрим, например, множество из трех векторов (рис. П. 11, а), предположив, что это множество составляет систему скользящих векторов. Выберем произвольную точку О на линии действия какого-либо из векторов системы, например первого, и приложим в этой точке векторный нуль, составленный из векторов / и равных по величине вектору / и действующих вдоль той же прямой (рис. П. 11, б).  [c.347]

Итак, мы установили, что вращательное действие пары сил на тело зависит от числового значения ее момента, но оно зависит еще и от положения плоскости действия пары. Поэтому момент пары можно рассматривать как векторную величину. Вектор момента пары перпендикулярен плоскости пары, причем если пара стремится повернуть плоскость против хода часовой стрелки, то вектор момента направлен к нам (рис. 1.31, а), если же пара поворачивает плоскость по часовой стрелке (рис. 1.31, б), то вектор момента пары направлен от нас. Если же на плоскость действия пары смотрят два человека с разных сторон, то оба они построят один и тот же вектор момента. Расположим плоскость П действия пары вертикально и допустим, что один из нас смотрит на эту плоскость справа (рис. 1.32, а), а второй — слева (рис. 1.32,6). Легко убедиться, что мы оба видим один и тот же вектор момента.  [c.29]

Вектор направлен iio мгновенной оси и характеризует скорость изменения вектора со только по величине. Вектор характеризует скорость изменения только по направлению. Если обозначить через (Oj угловую скорость вращения вектора со, то  [c.244]

Величина вектора i определяется равенством  [c.244]

Так как ш и (о взаимно перпендикулярны, то величина вектора равна  [c.489]

В зависимости от свойств изображаемой им величины вектор может быть свободным, т. е. приложенным в любой точке пространства, скользящим, т. е. приложенным в любой точке некоторой прямой, называемой основанием или линией действия вектора, и неподвижным, т. е. приложенным в некоторой фиксированной точке (подробнее об этом см. в конце параграфа, п. 13).  [c.19]

Вектор может быть геометрически изображен прямолинейным отрезком АВ (рис. 1). длина которого в известном масштабе соответствует численному значению вектора, а направление совпадает с направлением вектора. Численную величину вектора называют еще  [c.19]


По существу, алгебраические величины v v. w представляют собой проекции векторов v и w на ось х, т. г. v = v . и w = Wx- Однако здесь и всюду далее проекцию любого вектора и, коллинеарного оси /, на эту ось мы будем (как и модуль) обозначать символом и(иг = и) и называть, в отличие от модуля, численной или алгебраической величиной вектора и. Так как численная величина вектора может отличаться от его модуля только знаком, то это совпадение обозначений обычно несущественно. В случаях же, когда могут возникнуть недоразумения, модуль вектора будет обозначаться символом ) и .  [c.56]

Поскольку угловая скорость — векторная величина, вектором должно быть и угловое ускорение. Но при вращении тела вокруг неподвижной оси мы обычно рассматриваем угловую скорость как  [c.167]

Поскольку угловая скорость — векторная величина, вектором должно быть и угловое ускорение. Но при вращении тела вокруг неподвижной оси обычно рассматривают угловую скорость как скаляр и потому здесь нас могут интересовать только величина и знак углового ускорения.  [c.57]

Момент пары, подобно моменту силы относительно точки,— векторная величина. Вектор момента пары перпендикулярен плоскости пары. Но у всякой плоскости имеется две стороны. Условились вектор момента восставлять с той стороны, с которой пара представляется поворачивающей свое плечо против хода часовой стрелки (рис. 83, а). Таким образом, вектор момента пары сил характеризует не только величину воздействия пары на тело, но и плоскость пары, а также и направление, в котором силы пары стремятся повернуть тело.  [c.149]

Решая его графически (рис. 14, б), находят величины векторов ид и VBA-  [c.29]

Модуль, определение, нахождение, направление, величина, вектор, момент. .. равнодействующей.  [c.72]

Направление и величина вектора равнодействующей определяется равенством (с). Таким образом, направление линии действия равнодействующей можно предполагать известным. Обозначим на плоскости ii положение мгновенного центра ускорений О (рис. 49). Допустим, что К — точка пересечения линии действия равнодействующей и прямой ОС,  [c.409]

Примечание. Единицы абсолютного значения векторов элементарных трансляций обратной решетки — это не единицы длины. Если длина векторов а, Ь, с измеряется в сантиметрах, то величина векторов а, Ь, с измеряется в сантиметрах в минус первой степени (см ).  [c.67]

При изучении переменного прямолинейного движения точки под термином ускорение мы понимали только изменение скорости по величине. Однако в криволинейном движении меняется и направление скорости, так как криволинейное движение иначе не может возникнуть. Скорость является векторной величиной вектор скорости, обозначаемый V (в отличие от его модуля у), направлен по касательной к той же точке траектории, в которой в данный момент времени находится движущаяся точка .  [c.118]

Из вида этого равенства очевидно, что интеграл в его правой части определяет величину вектора Бюргерса протекающего в единицу времени через контур L, т. е. уносимого дислокациями, пересекающими линию L. Поэтому естественно назвать тензором плотности потока дислокаций.  [c.167]

Рассматривая величину вектора момента mo F), определяемую по формуле (1), и принимая во внимание его направление, приходим к заключению, что вектор момента mo F) представляет собой векторное произведение  [c.38]

Величина вектора скорости определяется равенством что совпадает с (11).  [c.165]

Вектор ускорения а в направлен от точки С к точке В параллельно направлению ВС, а вектор ускорения асо направлен от точки С к точке D параллельно направлению D. Таким образом, нормальные ускорения асв и асо известны по величине и направлению. Векторы асв и асо известны только по направлению. Первый направлен перпендикулярно к направлению ВС, второй — перпендикулярно к направлению D. Таким образом, в уравие. НИИ (4.31) неизвестными остаются только величины векторов уско. реиий асв и a D, которые могут быть определены следующим графическим построением.  [c.84]

Если вокруг дислокации L (рис. 12) обвести контур AB D, то участок контура ВС будет состоять из шести отрезков, а участок AD из пяти. Разница B —AD = b, где Ь означает величину вектора Бюргерса. Если контуром обвести несколько дислокаций (зоны искажений кристаллической решетки, которые перекрываются или сливаются), то величина его соответствует  [c.32]


Далее заметим, что оптимальный проект Si и его среднеквадратичные кривизны У1 неизвестны, но фиксированы. С другой стороны, проект Sj подчиняется лишь проектному ограничению, которое задает значение РЬ и, следовательно, определяет величину вектора Я, если выбрано его направление. Кроме того, в окрестности оптимального проекта s,-имеются проекты s,-, дающие веса конструкций, произвольно близкие к минимальному весу. Соответствующие векторы X произвольно близки к границе полупространства, определяемой неравенством (21). Если скалярное произведение Яиц будет неотрицательным для всех допустимых векторов Я, то вектор jx будет направлен вдоль внутренней нормали этого полупространства в начале координат таким образом, (19) является необходимым условием оптимальности. Это доказательство принадлежит Чжу и Прагеру [17].  [c.100]

Уравнение движения фазы у можно легко получить в явном виде, подставляя в (.5, 3. 7) вместо величины вектор вместо потока тензор напряя еяий р 1 — а вместо источника векторную величину Р . В результате находим  [c.195]

Простейшей векторной величиной, или вектором, является направленный отрезок, который вполне определяется заданием его длины (численной величины вектора), измеренной в некотором масштабе, и его направления в пространстве. Такие физические величины, как скорость, ускорение или сила, представляют собой величины векторные задание этих величин получает смысл только тогда, когда, кроме их численных значений, указывается и их направление. Термин вектор происходит от латинского слова vehere, что означает влечь , тянуть .  [c.19]

Вращение тела вокруг неподвижной оси характеризуется осью, угловой скоростью и направлением вращения. Эти характеристики движения можно отобразить одним вектором — вектором угловой скорости со, если вектор угловой скорости откладывать в масштабе на оси вращения от какой-либо ее точки и направлять так, что если смотреть с конца вектора на его начало, то вращение тела должно происходить против движения часовой стрелки. Тогда прямая, на которой расположен вектор Со, является осью вращс ния. Величина вектора со равна величине угловой скорости, а стрелка на векторе со показывает направление вращения (рис. 115).  [c.124]

Так как движение тела, имеющего одну неподвижную точку, в каждый момент времени можно считать вращением вокруг мгновенной осп, то в качестве величин, характеризующих это движение, можно ввести Х гиовеииую угловую скорость и мгновенное угловое ускорение враще-JH H твердого тела вокруг неподвижной точки. Очевидно, вводимая угловая скорость является векторной величиной, направленной в каждый момент времени по соответствующей мгновенной оси, и при использовании правой системы координат вектор угловой скорости w направлен по мгновенной оси так, что с направления этого вектора видно вращение тела вокруг мгновенной оси, проис.ходящим против движения часовой стрелки. Величину вектора угловой скорости можно вырази гь через элементарный угол поворота Аф вокруг мгновенной оси за время ДЕ  [c.168]

Абсолютная величина вектора к меняется вдоль луча просто по закону 1г = а/с (с ы = onst). Для определения же изменения  [c.366]

Покаяеем, что эти формулы выражают условие физичности, или, как иногда говорят, объективности, вектора а в том смысле, что при переходе от одной системы координат к другой, неподвижной по отношению к ней системе величина вектора а нс меняется (например, скорость самолета по от1Ю1иеи11ю к Земле не зависит от того, в какой неподвижно связанной с Землей системе координат мы рассматриваем скорость самолета). Для этого заметим, что сум.ча квадратов проекций вектора на оси координат не меняется при переходе от одних осей координат к другим и, таким образом квадрат длины вектора, т. е. квадрат абсолютного значения вектора, является инвариантом по отношению к изменению системы координат.  [c.115]


Смотреть страницы где упоминается термин Величина вектора : [c.32]    [c.110]    [c.379]    [c.415]    [c.244]    [c.247]    [c.127]    [c.21]    [c.22]    [c.107]    [c.180]    [c.23]    [c.49]    [c.41]    [c.65]    [c.38]    [c.112]   
Теоретическая механика (1987) -- [ c.9 ]



ПОИСК



Величины граничные Векторы

Величины граничные Точки — Векторы смещений

Величины граничные Точки— Векторы смешений

Геометрические величины, или векторы

Инвариантные величины в теории относительности. Четырехмерный вектор. Мир Минковского

Описание физических величин векторами

Поле физической величины. Условия физической объективности аналитического определения вектора

Полярные векторы. Аксильные векторы. Скалярные величины

Скалярные и векторные величины. Векторы. Равенство векторов Единичные векторы

Скалярные, векторные и тензорные величины. Физические компоненты вектора и тензора

Управление вектором и величиной тяги



© 2025 Mash-xxl.info Реклама на сайте