Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение канонических систем

РЕШЕНИЕ КАНОНИЧЕСКИХ СИСТЕМ МЕТОДОМ УСРЕДНЕНИЯ  [c.297]

Более того, основная идея доказательства и более поздней теоремы Зигеля о неинтегрируемости гамильтоновых систем вблизи положений устойчивого равновесия [14] тоже восходит к Пуанкаре. Рассуждения основаны на подробном исследовании некоторых множеств долгопериодических решений канонических систем дифференциальных уравнений.  [c.36]

Решение канонических систем методом усреднения  [c.424]

Отметим еще одно направление в изучении канонических систем, которое началось с выступления А. Н. Колмогорова в 1954 г. Он предложил свой метод последовательных приближений для построения решений канонических систем, который нашел применения во многих работах.  [c.80]


Решение канонических систем уравнений. Целесообразным методом точного решения канонических систем уравнений метода сил и метода перемещений является построение сопряжённой матрицы.  [c.150]

В. И. Арнольд получил новые результаты по вопросам существования условно-периодических решений канонических систем, из которых вытекают теоремы, которые можно рассматривать как аналоги теоремы Лапласа (см. ДАН 137, № 2, 1961 ДАН 138, № 1, 1961). (Прим. перев.)  [c.204]

Найти решение уравнения u+o)o w=ef( , й), e- l, используя метод усреднения канонических систем. Рассмотреть уравнение Ван-дер-Поля ef(u, й)=у 1—и 1с )й [126].  [c.324]

Решение. Основную систему получаем, освобождая правый конец трубопровода. При равномерном нагреве вертикальная опорная реакция Хз = О и канонические уравнения имеют вид  [c.517]

Иногда, как уже указывалось в случае канонических систем, сама функция f x t) в левой части уравнения (37) называется интегралом. Эта функция называется также инвариантом системы (36), так как для всякого решения системы она сохраняет постоянное значение, как бы ни изменялось время L  [c.271]

При решении задач устойчивости или задач о собственных колебаниях в качестве исходных дифференциальных уравнений используют однородную каноническую систему (3.70) или  [c.97]

Пример 2. Получение канонических систем для решения задач изгиба и устойчивости прямолинейного стержня с учетом деформаций поперечного сдвига.  [c.116]

Отметим, что при получении канонических систем и матриц фундаментальных решений в данных примерах наиболее трудоемкие операции матричных перемножений, обращений, интегрирований выполнялись аналитически с целью детально показать последовательность вариационно-матричного способа. Для более сложных моделей деформирования аналогичные операции разумно выполнять на ЭВМ.  [c.121]

Получение канонических систем для решения задач статики, устойчивости и колебаний многослойных оболочек вращения  [c.149]

Математическое описание деформирования тонких многослойных оболочек вращения может быть сведено к системам обыкновенных дифференциальных уравнений. Для решения таких систем в настоящее время разработаны эффективные численные методы. Наиболее удобной формой для интегрирования на ЭВМ является представление разрешающих дифференциальных уравнений в виде системы дифференциальных уравнений первого порядка (или канонической системы). В 3.5 был представлен в общем виде вариационно-матричный способ получения канонических систем. Ниже рассмотрим конкретную реализацию этого способа для оболочек вращения.  [c.149]


При получении канонических систем дифференциальных уравнений для решения задач статики оболочек вращения в качестве обобщенных перемещений (X были приняты и, V, W, i) j, г -2. Соответствующие им внутренние силовые факторы обозначались А, . Если на торце  [c.180]

Рассмотрим получение канонических систем дифференциальных уравнений для решения задач статики трехслойных оболочек вращения с жестким заполнителем. Будем считать, что оси упругой симметрии как заполнителя, так и каждого слоя в обшивках совпадают с направлениями координатных линий. За координатную поверхность 2=0 примем срединную поверхность заполнителя. В этом случае будем иметь = г ) (t = 1, 2) = 0 6<3) =  [c.205]

В монографии рассмотрена проблема решения задач теории тонких оболочек вращения в условиях одностороннего контакта оболочки со штампом или между двумя оболочками. Предложен новый подход, основанный иа построении и решении методом прогонки канонических систем обыкновенных дифференциальных уравнений в сочетании с итеративным отысканием iOH контакта. Решены задачи определения напряженно-деформированного состояния и устойчивости при одностороннем взаимодействии оболочек вращения различных форм. Построена нелинейная теория обо-почек, составленных из односторонне контактирующих слоев.  [c.2]

Пример 1 . Требуется получить каноническую систему и матрицу фундаментальных решений задач статики для многослойной полосы единичной ширины. Расчет выполнить с учетом деформаций поперечных сдвигов. Структура многослойной полосы — симметричная относительно срединной поверхности.  [c.54]

Пример 1.7. Требуется получить каноническую систему и матрицу фундаментальных решений для задач устойчивости многослойных стержней, имеющих симметричную структуру. Определим критическую силу сжатого защемленного по концам стержня. Расчет выполним с учетом деформации поперечных сдвигов.  [c.58]

Гамильтоновы системы являются наиболее подходящей моделью для описания движений в динамических системах с потенциальными полями, когда существует так называемая характеристическая функция, зависящая от обобщенных координат и скоростей (импульсов) [159], которая порождает дифференциальные уравнения движения поэтому можно сказать, что она исчерпывающим образом описывает движения в динамических системах. Асимптотическое интегрирование канонических систем так или иначе связано с нахождение. периодических или условно-периодических решений, с изучением окрестности таких решении и с проблемой устойчивости частных решений гамильтоновых систем [12, 91, 160].  [c.195]

Таким образом, замена переменных (81) преобразовывает неавтономную каноническую систему (1) в автономную каноническую систему (59) с правыми частями (79), которая, к сожалению, пе обладает свойством разделения переменных, но более удобна для исследования, в частности для отыскания равновесных (стационарных) решений.  [c.209]

Первые п уравнений определяют обобщенные координаты г/ как функции t и 2п произвольных постоянных а , Подставляя г/А=г/й( > . п. Pi. > Р ) во вторую группу уравнений (41), находим обобщенные имнульсы как функции t ш 2п произвольных постоянных ttft, Pfe. Якоби разработал и алгоритм решения обратной задачи [7, 165] по известному общел1у решению канонической системы (1) можно построить полный интеграл S t у и. .., Уп, tti,. .., а ) уравнения Гамильтона — Якоби (38). Из теоремы Гамильтона — Якоби вытекает, что асимптотические методы решения канонических систем (1) и уравнения (38) эквивалентны с точки зрения полноты и точности их решения. Поэтому их применение в конкретных задачах в большой степени определяется привычкой и желанием исследователя.  [c.201]

Желание многих астрономов построить теории движения небесных тел в тригонометрической форме , подразумевая под этим представление позиционных переменных (большие полуоси, эксцентриситеты, наклоны и их аналоги) в виде сумм периодических функций времени, а угловых переменных (долготы, аномалии и их аналоги) —в виде сумм линейных функций времени и сумм периодических функций, привело к разработке общего метода построения решений канонических систем с периодическим по угловым переменным и аналитическим по ц гамильтонианом, названного Пуанкаре методом Линдщтедта [2]. Начало этого направления было положено Лапласом, а завер-щенное развитие его мы получили благодаря Пуанкаре.  [c.824]


Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

При изучении канонических систем прибегают к геометрическому представлению, аналогичному тому представлению, которое дается прострайством состояний движения для решений лагранжевой системы (гл. VI. п. 2). 2 п канонических переменных р, q истолковываются как декартовы прямоугольные координаты линейного пространства Фдп 2/г измерений, которое, следуя Джиббсу ), называют фазовым пространством.  [c.244]

Статические решения. Чтобы начать с простого, но не лишенного, однако, интереса случая, возьмем снова каноническую систему, характеристическая функция которой не зависит от t В этом случае существует интеграл Н = onst, и, согласно следствию п, 27, соответствующее условие стационарности ЬН = 0 позволяет написать 2п инвариантных соотношений  [c.324]

На любое из этих решений а распространяется замечание, вытекающее из теоремы Дирихле для динамического случая, а именно, что возможно указать чисто качественное условие устойчивости, т. е. условие, выражаемое посредством одних только соотношений неравенства. Действительно, таким является в силу уравнений (104) условие, что Н имеет для решения о действительный максимум или минимум (см. п. 7 и гл. VII, пп. 5—6, 17) замечание о лагранжевых системах с кинетическим потенциалом, не зависящим от времени, в конце упомянутого п. 17, гл. VI, таким образом, будет вполне оправдано, так как, как это непосредственно следует из п. 1 той же самой главы, всякая такая лагранжева система определяет каноническую систему с характеристической функцией, не зависящей от t, и обратно.  [c.324]

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и кориуску-  [c.208]

Для одномерных задач показаны этапы вывода вариационноматричным способом канонических систем дифференциальных уравнений, а также получения с помощью фундаментальных решений матриц жесткости одномерных элементов. Изложены основные положения метода конечных элементов, включая аппроксимацию решений, составление для элемента приведенных матриц жесткости,масс, начальных напряжений. Кратко рассмотрены методы решения задач динамики и нелинейной статики.  [c.71]

Получим каноническую систему дифференциальных уравнений для решения линейных задач статики слоистых ортотропных оболочек вращения с использовчнием данной модели деформирования. При ЭТ0Л1, как и прежде, воспользуемся вариационно-матричным способом и обозначениями (4.58) для оболочек вращения. После анализа выражений для деформаций и изменений кривизн (4.200) в качестве компонент вектора обобщенных перемещений примем  [c.176]

Ниже приводятся описания и тексты вспомогательных программ , обеспечивающих вариационно-матричный способ получения канонических систем дифференциальных уравнений для решения задач статики и устойчивости и колебаний многослойных оболочек вращения получение матриц фундаментальных решений и матриц жесткости кольцевых оболочечиых элементов формирование и решение систем алгебраических уравнений относительно неизвестных обобщенных узловых перемещений,  [c.250]

Особое внимание уделено смешанным вариационным формулировкам двух типов. Первая соответствует смешанному вариационному принципу Рейссиера, вторая — задачам на экстремум полной потенциальной энергии системы при наличии дополнительных условий в виде дифференциальных уравнений связи между перемещениями и их производными. Для одномерных задач предлагается вариационно-матричный способ вывода канонических систем разрешающих дифференциальных уравнений. Для двумерных задач рассматриваются вопросы реализации решений с использованием проекционных методов типа Рэлея—Ритца и конечных элементов с учетом специфики смешанной вариационной формулировки.  [c.5]

Рассмотрим многослойную оболочку вращения. Координаты аь 2 направим вдоль меридиана и параллели. Материалы слоев пусть будут ортотропными с осями упругой симметрии, совпадающими с направлениями координатных линий. В этом случае при получении разрешающих уравнений можно пользоваться соотношениями, записанными для амплитудных значений л-й гармоники разложений функции в ряды Фурье по угловой координате 2. Ниже приводятся процедуры получения канонических систем разрешающих дифференциальных уравнений для решения задач статики лмногослойных оболочек вращения общего вида.  [c.216]


Широкое распространение в теории канонических систем получил метод нормализации гамильтониана в окрестности равно-ise Horo решения (положения равновесия), который, в сущности, является специальным методом замены переменных. Впервые вопросы нормализации гамильтоновых систем были подробно исследованы Биркгофом [161, 162]. К первоначальной канонической системе применяется такая каноническая замена переменных, чтобы в новых обобщенных координатах и импульсах функция Гамильтона имела наиболее простой вид, который и принято иа- 1ывать нормальной формой гамильтониана возмущенного движения.  [c.195]


Смотреть страницы где упоминается термин Решение канонических систем : [c.245]    [c.307]    [c.324]    [c.158]    [c.253]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.0 ]



ПОИСК



Вид канонический

Некоторые свойства решений канонической системы (2.16) на цикле

Подпрограмма получения канонической системы для решения задач на собственные значения

Получение канонических систем для решения задач статики, устойчивости и колебаний многослойных оболочек вращения

Решение канонических систем методом усреднения

Решение канонических систем методом усреднения Квадратичные системы

Решение системы

Решение системы канонических уравнений сокращенным способом Гаусса

Решения однородной канонической системы уравнений, геометрическая

Решения однородной канонической системы уравнений, геометрическая интерпретация

Система каноническая

Статические решения канонической системы уравнений

Стационарные решения канонической системы уравнений



© 2025 Mash-xxl.info Реклама на сайте